- 1. Department of Ophthalmology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha 410000, China;
- 2. Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410000, China;
- 3. Changsha Aier Eye Hospital, Changsha 410000, China;
The lamina cribrosa (LC) is a complicated collagenous meshwork of trabeculae and laminar pores contain capillaries, nerves and neurogliocytes, which provides structural and nutrient support to the retinal ganglion cell axons as they exit the eye. The intraocular pressure causes direct damage or deformation and remodeling of LC, leads to axoplaxmic transport and blood supply disturbance. The preponderance of evidence suggests that LC is the principal site of glaucomatous damage. The development of optic coherence tomography (OCT) technology has improved the imaging quality of deep structures of the optic nerve head and makes it possible to detect LC. The quantitative research indexes of LC structure include LC depth, laminar curvature, laminar thickness, prelaminar tissue, laminar pore, laminar defect and hemodynamics. To improve the understanding of LC structure, explore the characteristics of LC and understand the biomechanical and hemodynamic pathogenesis of glaucoma, which would be contribute to the application of big data research in the diagnosis and treatment of glaucoma.
Citation: Luo Haomin, Zhou Dengming, Duan Xuanchu. Clinical application and new progress of optical coherence tomography in detecting lamina cribrosa structure. Chinese Journal of Ocular Fundus Diseases, 2021, 37(2): 153-157. doi: 10.3760/cma.j.cn511434-20200409-00152 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Downs JC, Girkin CA. Lamina cribrosa in glaucoma[J]. Curr Opin Ophthalmol, 2017, 28(2): 113-119. DOI: 10.1097/ICU.0000000000000354. |
2. | Quigley H, Arora K, Idrees S, et al. Biomechanical responses of lamina cribrosa to intraocular pressure change assessed by optical coherence tomography in glaucoma eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2566-2577. DOI: 10.1167/iovs.16-21321. |
3. | Luo H, Yang H, Gardiner SK, et al. Factors influencing central lamina cribrosa depth: a multicenter study[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2357-2370. DOI: 10.1167/iovs.17-23456. |
4. | Vianna JR, Lanoe VR, Quach J, et al. Serial changes in lamina cribrosa depth and neuroretinal parameters in glaucoma: impact of choroidal thickness[J]. Ophthalmology, 2017, 124(9): 1392-1402. DOI: 10.1016/j.ophtha.2017.03.048. |
5. | Johnstone J, Fazio M, Rojananuangnit K, et al. Variation of the axial location of Bruch's membrane opening with age, choroidal thickness, and race[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 2004-2009. DOI: 10.1167/iovs.13-12937. |
6. | Yang H, Luo H, Gardiner SK, et al. Factors influencing optical coherence tomography peripapillary choroidal thickness: a multicenter study[J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 795-806. DOI: 10.1167/iovs.18-25407. |
7. | Ren R, Yang H, Gardiner SK, et al. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 1531-1539. DOI: 10.1167/iovs.13-13382. |
8. | Li L, Bian A, Cheng G, et al. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma[J]. Acta Ophthalmol, 2016, 94(6): e492-500. DOI: 10.1111/aos.13012. |
9. | Bellezza AJ, Rintalan CJ, Thompson HW, et al. Anterior scleral canal geometry in pressurised (IOP 10) and non-pressurised (IOP 0) normal monkey eyes[J]. Br J Ophthalmol, 2003, 87(10): 1284-1290. DOI: 10.1136/bjo.87.10.1284. |
10. | Downs JC. Optic nerve head biomechanics in aging and disease[J]. Exp Eye Res, 2015, 133: 19-29. DOI: 10.1016/j.exer.2015.02.011. |
11. | Lanzagorta-Aresti A, Perez-Lopez M, Palacios-Pozo E, et al. Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure[J]. Br J Ophthalmol, 2017, 101(3): 290-294. DOI: 10.1136/bjophthalmol-2015-307428. |
12. | Esfandiari H, Efatizadeh A, Hassanpour K, et al. Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma[J]. Graefe’s Arch Clin Exp Ophthalmol, 2018, 256(12): 2391-2398. DOI: 10.1007/s00417-018-4135-1. |
13. | Kadziauskiene A, Jasinskiene E, Asoklis R, et al. Long-term shape, curvature, and depth changes of the lamina cribrosa after trabeculectomy[J]. Ophthalmology, 2018, 125(11): 1729-1740. DOI: 10.1016/j.ophtha.2018.05.011. |
14. | Lee EJ, Kim TW, Weinreb RN, et al. Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma[J]. Ophthalmology, 2013, 120(3): 553-559. DOI: 10.1016/j.ophtha.2012.08.047. |
15. | Lee EJ, Kim TW. Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning[J]. Ophthalmology, 2015, 122(11): 2234-2242. DOI: 10.1016/j.ophtha.2015.07.020. |
16. | Girard MJ, Beotra MR, Chin KS, et al. In vivo 3-dimensional strain mapping of the optic nerve head following intraocular pressure lowering by trabeculectomy[J]. Ophthalmology, 2016, 123(6): 1190-1200. DOI: 10.1016/j.ophtha.2016.02.008. |
17. | Lee SH, Kim TW, Lee EJ, et al. Diagnostic power of lamina cribrosa depth and curvature in glaucoma[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 755-762. DOI: 10.1167/iovs.16-20802. |
18. | Tan NYQ, Tham YC, Thakku SG, et al. Changes in the anterior lamina cribrosa morphology with glaucoma severity [J/OL]. Sci Rep, 2019, 9(1): 6612[2019-04-29]. http://europepmc.org/article/MED/31036869. DOI: 10.1038/s41598-019-42649-1. |
19. | Park SC, Kiumehr S, Teng CC, et al. Horizontal central ridge of the lamina cribrosa and regional differences in laminar insertion in healthy subjects[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1610-1616. DOI: 10.1167/iovs.11-7577. |
20. | Krzyzanowska-Berkowska P, Czajor K, Syga P, et al. Lamina cribrosa depth and shape in glaucoma suspects. comparison to glaucoma patients and healthy controls[J]. Curr Eye Res, 2019, 44(9): 1026-1033. DOI: 10.1080/02713683.2019.1616767. |
21. | Tun TA, Thakku SG, Png O, et al. Shape changes of the anterior lamina cribrosa in normal, ocular hypertensive, and glaucomatous eyes following acute intraocular pressure elevation[J]. Invest Ophthalmol Vis Sci, 2016, 57(11): 4869-4877. DOI: 10.1167/iovs.16-19753. |
22. | Kim YW, Jeoung JW, Kim DW, et al. Clinical assessment of lamina cribrosa curvature in eyes with primary open-angle glaucoma [J/OL]. PLoS One, 2016, 11(3): e0150260[2016-03-10]. http://europepmc.org/article/MED/26963816. DOI: 10.1371/journal.pone.0150260. |
23. | Lee KM, Kim TW, Lee EJ, et al. Association of corneal hysteresis with lamina cribrosa curvature in primary open angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2019, 60(13): 4171-4177. DOI: 10.1167/iovs.19-27087. |
24. | Lee SH, Kim TW, Lee EJ, et al. Lamina cribrosa curvature in healthy Korean eyes [J/OL]. Sci Rep, 2019, 9(1): 1756[2019-02-11]. http://europepmc.org/article/MED/30741992. DOI: 10.1038/s41598-018-38331-7. |
25. | Ha A, Kim TJ, Girard MJA, et al. Baseline lamina cribrosa curvature and subsequent visual field progression rate in primary open-angle glaucoma[J]. Ophthalmology, 2018, 125(12): 1898-1906. DOI: 10.1016/j.ophtha.2018.05.017. |
26. | Park SC, Brumm J, Furlanetto RL, et al. Lamina cribrosa depth in different stages of glaucoma[J]. Invest Ophthalmol Vis Sci, 2015, 56(3): 2059-2064. DOI: 10.1167/iovs.14-15540. |
27. | Yang H, Williams G, Downs JC, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(10): 7109-7121. DOI: 10.1167/iovs.11-7448. |
28. | Yang H, Reynaud J, Lockwood H, et al. The connective tissue phenotype of glaucomatous cupping in the monkey eye - clinical and research implications[J]. Prog Retin Eye Res, 2017, 59: 1-52. DOI: 10.1016/j.preteyeres.2017.03.001. |
29. | Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging[J]. Am J Ophthalmol, 2014, 157(3): 550-557. DOI: 10.1016/j.ajo.2013.11.008. |
30. | Yang H, Downs JC, Girkin C, et al. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness[J]. Invest Ophthalmol Vis Sci, 2007, 48(10): 4597-4607. DOI: 10.1167/iovs.07-0349. |
31. | Omodaka K, Takahashi S, Matsumoto A, et al. Clinical factors associated with lamina cribrosa thickness in patients with glaucoma, as measured with swept source optical coherence tomography [J/OL]. PLoS One, 2016, 11(4): e0153707[2016-04-21]. http://europepmc.org/article/MED/27100404. DOI: 10.1371/journal.pone.0153707. |
32. | Kwun Y, Han JC, Kee C. Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect[J]. Am J Ophthalmol, 2015, 159(3): 512-518. DOI: 10.1016/j.ajo.2014.11.034. |
33. | Park HY, Park CK. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma[J]. Ophthalmology, 2013, 120(4): 745-752. DOI: 10.1016/j.ophtha.2012.09.051. |
34. | Jung YH, Park HY, Jung KI, et al. Comparison of prelaminar thickness between primary open angle glaucoma and normal tension glaucoma patients [J/OL]. PLoS One, 2015, 10(3): e0120634[2015-03-20]. http://europepmc.org/article/MED/25793734. DOI: 10.1371/journal.pone.0120634. |
35. | Zhang L, Beotra MR, Baskaran M, et al. In vivo measurements of prelamina and lamina cribrosa biomechanical properties in humans [J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(3): 27[2020-03-09]. http://europepmc.org/article/MED/32186670. DOI: 10.1167/iovs.61.3.27. |
36. | Wu Z, Xu G, Weinreb RN, et al. Optic nerve head deformation in glaucoma: a prospective analysis of optic nerve head surface and lamina cribrosa surface displacement[J]. Ophthalmology, 2015, 122(7): 1317-1329. DOI: 10.1016/j.ophtha.2015.02.035. |
37. | Strouthidis NG, Fortune B, Yang H, et al. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1206-1219. DOI: 10.1167/iovs.10-5599. |
38. | You JY, Park SC, Su D, et al. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits[J]. JAMA Ophthalmol, 2013, 131(3): 314-320. DOI: 10.1001/jamaophthalmol.2013.1926. |
39. | Park HL, Lee J, Jung Y, et al. Optic disc hemorrhage and lamina cribrosa defects in glaucoma progression [J/OL]. Sci Rep, 2017, 7(1): 3489[2017-06-14]. http://europepmc.org/article/MED/28615670. DOI: 10.1038/s41598-017-03828-0. |
40. | Han JC, Choi JH, Park DY, et al. Border tissue morphology is spatially associated with focal lamina cribrosa defect and deep-layer microvasculature dropout in open-angle glaucoma[J]. Am J Ophthalmol, 2019, 203: 89-102. DOI: 10.1016/j.ajo.2019.02.023. |
41. | Moghimi S, Zangwill LM, Manalastas PIC, et al. Association between lamina cribrosa defects and progressive retinal nerve fiber layer loss in glaucoma[J]. JAMA Ophthalmol, 2019, 137(4): 425-433. DOI: 10.1001/jamaophthalmol.2018.6941. |
42. | Han JC, Cho SH, Sohn DY, et al. The characteristics of lamina cribrosa defects in myopic eyes with and without open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 486-494. DOI: 10.1167/iovs.15-17722. |
43. | Sung MS, Heo MY, Heo H, et al. Bruch's membrane opening enlargement and its implication on the myopic optic nerve head [J/OL]. Sci Rep, 2019, 9(1): 19564[2019-12-20]. http://europepmc.org/article/MED/31863084. DOI: 10.1038/s41598-019-55926-w. |
44. | Sawada Y, Araie M, Ishikawa M, et al. Multiple temporal lamina cribrosa defects in myopic eyes with glaucoma and their association with visual field defects[J]. Ophthalmology, 2017, 124(11): 1600-1611. DOI: 10.1016/j.ophtha.2017.04.027. |
45. | 孙云晓, 谢媛, 刘祥祥, 等. 自发性局限性筛板缺损与青光眼视神经损伤进展的关系[J]. 中华眼科杂志, 2019, 55(5): 338-346. DOI: 10.3760/cma.j.issn.0412-4081.2019.05.007.Sun YX, Xie Y, Liu XX, et al. Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy[J]. Chin J Ophthalmol, 2019, 55(5): 338-346. DOI: 10.3760/cma.j.issn.0412-4081.2019.05.007. |
46. | Kim YK, Park KH. Lamina cribrosa defects in eyes with glaucomatous disc haemorrhage[J]. Acta Ophthalmol, 2016, 94(6): e468-473. DOI: 10.1111/aos.12903. |
47. | Mistry V, An D, Barry CJ, et al. Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma[J]. Br J Ophthalmol, 2020, 104(1): 98-103. DOI: 10.1136/bjophthalmol-2018-313775. |
48. | Nadler Z, Wang B, Schuman JS, et al. In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6459-6466. DOI: 10.1167/iovs.14-15177. |
49. | Shoji T, Kuroda H, Suzuki M, et al. Glaucomatous changes in lamina pores shape within the lamina cribrosa using wide bandwidth, femtosecond mode-locked laser OCT [J/OL]. PLoS One, 2017, 12(7): e0181675[2017-07-25]. http://europepmc.org/article/MED/28742840. DOI: 10.1371/journal.pone.0181675. |
50. | Omodaka K, Maekawa S, An G, et al. Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography [J/OL]. PLoS One, 2018, 13(11): e0207600[2018-11-21]. http://europepmc.org/article/MED/30462712. DOI: 10.1371/journal.pone.0207600. |
51. | Chen CL, Bojikian KD, Wen JC, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss[J]. JAMA Ophthalmol, 2017, 135(5): 461-468. DOI: 10.1001/jamaophthalmol.2017.0261. |
52. | Jo YH, Sung KR, Shin JW. Peripapillary and macular vessel density measurement by optical coherence tomography angiography in pseudoexfoliation and primary open angle glaucoma[J]. J Glaucoma, 2020, 29(5): 381-385. DOI: 10.1097/IJG.0000000000001464. |
53. | Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5713-5722. DOI: 10.1167/iovs.17-22865. |
54. | Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect[J]. Ophthalmology, 2017, 124(5): 709-719. DOI: 10.1016/j.ophtha.2017.01.004. |
55. | Rao HL, Pradhan ZS, Weinreb RN, et al. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma[J]. J Glaucoma, 2017, 26(6): 548-554. DOI: 10.1097/IJG.0000000000000670. |
56. | Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma[J]. Ophthalmology, 2016, 123(12): 2498-2508. DOI: 10.1016/j.ophtha.2016.08.041. |
57. | Akagi T, Iida Y, Nakanishi H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study[J]. Am J Ophthalmol, 2016, 168: 237-249. DOI: 10.1016/j.ajo.2016.06.009. |
58. | Suh MH, Zangwill LM, Manalastas PI, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects[J]. Ophthalmology, 2016, 123(11): 2309-2317. DOI: 10.1016/j.ophtha.2016.07.023. |
59. | Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care[J]. Curr Eye Res, 2018, 43(9): 1067-1082. DOI: 10.1080/02713683.2018.1475013. |
60. | Kumar RS, Anegondi N, Chandapura RS, et al. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6079-6088. DOI: 10.1167/iovs.16-19984. |
61. | Rao HL, Pradhan ZS, Weinreb RN, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma[J]. Am J Ophthalmol, 2016, 171: 75-83. DOI: 10.1016/j.ajo.2016.08.030. |
- 1. Downs JC, Girkin CA. Lamina cribrosa in glaucoma[J]. Curr Opin Ophthalmol, 2017, 28(2): 113-119. DOI: 10.1097/ICU.0000000000000354.
- 2. Quigley H, Arora K, Idrees S, et al. Biomechanical responses of lamina cribrosa to intraocular pressure change assessed by optical coherence tomography in glaucoma eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2566-2577. DOI: 10.1167/iovs.16-21321.
- 3. Luo H, Yang H, Gardiner SK, et al. Factors influencing central lamina cribrosa depth: a multicenter study[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2357-2370. DOI: 10.1167/iovs.17-23456.
- 4. Vianna JR, Lanoe VR, Quach J, et al. Serial changes in lamina cribrosa depth and neuroretinal parameters in glaucoma: impact of choroidal thickness[J]. Ophthalmology, 2017, 124(9): 1392-1402. DOI: 10.1016/j.ophtha.2017.03.048.
- 5. Johnstone J, Fazio M, Rojananuangnit K, et al. Variation of the axial location of Bruch's membrane opening with age, choroidal thickness, and race[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 2004-2009. DOI: 10.1167/iovs.13-12937.
- 6. Yang H, Luo H, Gardiner SK, et al. Factors influencing optical coherence tomography peripapillary choroidal thickness: a multicenter study[J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 795-806. DOI: 10.1167/iovs.18-25407.
- 7. Ren R, Yang H, Gardiner SK, et al. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 1531-1539. DOI: 10.1167/iovs.13-13382.
- 8. Li L, Bian A, Cheng G, et al. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma[J]. Acta Ophthalmol, 2016, 94(6): e492-500. DOI: 10.1111/aos.13012.
- 9. Bellezza AJ, Rintalan CJ, Thompson HW, et al. Anterior scleral canal geometry in pressurised (IOP 10) and non-pressurised (IOP 0) normal monkey eyes[J]. Br J Ophthalmol, 2003, 87(10): 1284-1290. DOI: 10.1136/bjo.87.10.1284.
- 10. Downs JC. Optic nerve head biomechanics in aging and disease[J]. Exp Eye Res, 2015, 133: 19-29. DOI: 10.1016/j.exer.2015.02.011.
- 11. Lanzagorta-Aresti A, Perez-Lopez M, Palacios-Pozo E, et al. Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure[J]. Br J Ophthalmol, 2017, 101(3): 290-294. DOI: 10.1136/bjophthalmol-2015-307428.
- 12. Esfandiari H, Efatizadeh A, Hassanpour K, et al. Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma[J]. Graefe’s Arch Clin Exp Ophthalmol, 2018, 256(12): 2391-2398. DOI: 10.1007/s00417-018-4135-1.
- 13. Kadziauskiene A, Jasinskiene E, Asoklis R, et al. Long-term shape, curvature, and depth changes of the lamina cribrosa after trabeculectomy[J]. Ophthalmology, 2018, 125(11): 1729-1740. DOI: 10.1016/j.ophtha.2018.05.011.
- 14. Lee EJ, Kim TW, Weinreb RN, et al. Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma[J]. Ophthalmology, 2013, 120(3): 553-559. DOI: 10.1016/j.ophtha.2012.08.047.
- 15. Lee EJ, Kim TW. Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning[J]. Ophthalmology, 2015, 122(11): 2234-2242. DOI: 10.1016/j.ophtha.2015.07.020.
- 16. Girard MJ, Beotra MR, Chin KS, et al. In vivo 3-dimensional strain mapping of the optic nerve head following intraocular pressure lowering by trabeculectomy[J]. Ophthalmology, 2016, 123(6): 1190-1200. DOI: 10.1016/j.ophtha.2016.02.008.
- 17. Lee SH, Kim TW, Lee EJ, et al. Diagnostic power of lamina cribrosa depth and curvature in glaucoma[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 755-762. DOI: 10.1167/iovs.16-20802.
- 18. Tan NYQ, Tham YC, Thakku SG, et al. Changes in the anterior lamina cribrosa morphology with glaucoma severity [J/OL]. Sci Rep, 2019, 9(1): 6612[2019-04-29]. http://europepmc.org/article/MED/31036869. DOI: 10.1038/s41598-019-42649-1.
- 19. Park SC, Kiumehr S, Teng CC, et al. Horizontal central ridge of the lamina cribrosa and regional differences in laminar insertion in healthy subjects[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1610-1616. DOI: 10.1167/iovs.11-7577.
- 20. Krzyzanowska-Berkowska P, Czajor K, Syga P, et al. Lamina cribrosa depth and shape in glaucoma suspects. comparison to glaucoma patients and healthy controls[J]. Curr Eye Res, 2019, 44(9): 1026-1033. DOI: 10.1080/02713683.2019.1616767.
- 21. Tun TA, Thakku SG, Png O, et al. Shape changes of the anterior lamina cribrosa in normal, ocular hypertensive, and glaucomatous eyes following acute intraocular pressure elevation[J]. Invest Ophthalmol Vis Sci, 2016, 57(11): 4869-4877. DOI: 10.1167/iovs.16-19753.
- 22. Kim YW, Jeoung JW, Kim DW, et al. Clinical assessment of lamina cribrosa curvature in eyes with primary open-angle glaucoma [J/OL]. PLoS One, 2016, 11(3): e0150260[2016-03-10]. http://europepmc.org/article/MED/26963816. DOI: 10.1371/journal.pone.0150260.
- 23. Lee KM, Kim TW, Lee EJ, et al. Association of corneal hysteresis with lamina cribrosa curvature in primary open angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2019, 60(13): 4171-4177. DOI: 10.1167/iovs.19-27087.
- 24. Lee SH, Kim TW, Lee EJ, et al. Lamina cribrosa curvature in healthy Korean eyes [J/OL]. Sci Rep, 2019, 9(1): 1756[2019-02-11]. http://europepmc.org/article/MED/30741992. DOI: 10.1038/s41598-018-38331-7.
- 25. Ha A, Kim TJ, Girard MJA, et al. Baseline lamina cribrosa curvature and subsequent visual field progression rate in primary open-angle glaucoma[J]. Ophthalmology, 2018, 125(12): 1898-1906. DOI: 10.1016/j.ophtha.2018.05.017.
- 26. Park SC, Brumm J, Furlanetto RL, et al. Lamina cribrosa depth in different stages of glaucoma[J]. Invest Ophthalmol Vis Sci, 2015, 56(3): 2059-2064. DOI: 10.1167/iovs.14-15540.
- 27. Yang H, Williams G, Downs JC, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(10): 7109-7121. DOI: 10.1167/iovs.11-7448.
- 28. Yang H, Reynaud J, Lockwood H, et al. The connective tissue phenotype of glaucomatous cupping in the monkey eye - clinical and research implications[J]. Prog Retin Eye Res, 2017, 59: 1-52. DOI: 10.1016/j.preteyeres.2017.03.001.
- 29. Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging[J]. Am J Ophthalmol, 2014, 157(3): 550-557. DOI: 10.1016/j.ajo.2013.11.008.
- 30. Yang H, Downs JC, Girkin C, et al. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness[J]. Invest Ophthalmol Vis Sci, 2007, 48(10): 4597-4607. DOI: 10.1167/iovs.07-0349.
- 31. Omodaka K, Takahashi S, Matsumoto A, et al. Clinical factors associated with lamina cribrosa thickness in patients with glaucoma, as measured with swept source optical coherence tomography [J/OL]. PLoS One, 2016, 11(4): e0153707[2016-04-21]. http://europepmc.org/article/MED/27100404. DOI: 10.1371/journal.pone.0153707.
- 32. Kwun Y, Han JC, Kee C. Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect[J]. Am J Ophthalmol, 2015, 159(3): 512-518. DOI: 10.1016/j.ajo.2014.11.034.
- 33. Park HY, Park CK. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma[J]. Ophthalmology, 2013, 120(4): 745-752. DOI: 10.1016/j.ophtha.2012.09.051.
- 34. Jung YH, Park HY, Jung KI, et al. Comparison of prelaminar thickness between primary open angle glaucoma and normal tension glaucoma patients [J/OL]. PLoS One, 2015, 10(3): e0120634[2015-03-20]. http://europepmc.org/article/MED/25793734. DOI: 10.1371/journal.pone.0120634.
- 35. Zhang L, Beotra MR, Baskaran M, et al. In vivo measurements of prelamina and lamina cribrosa biomechanical properties in humans [J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(3): 27[2020-03-09]. http://europepmc.org/article/MED/32186670. DOI: 10.1167/iovs.61.3.27.
- 36. Wu Z, Xu G, Weinreb RN, et al. Optic nerve head deformation in glaucoma: a prospective analysis of optic nerve head surface and lamina cribrosa surface displacement[J]. Ophthalmology, 2015, 122(7): 1317-1329. DOI: 10.1016/j.ophtha.2015.02.035.
- 37. Strouthidis NG, Fortune B, Yang H, et al. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1206-1219. DOI: 10.1167/iovs.10-5599.
- 38. You JY, Park SC, Su D, et al. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits[J]. JAMA Ophthalmol, 2013, 131(3): 314-320. DOI: 10.1001/jamaophthalmol.2013.1926.
- 39. Park HL, Lee J, Jung Y, et al. Optic disc hemorrhage and lamina cribrosa defects in glaucoma progression [J/OL]. Sci Rep, 2017, 7(1): 3489[2017-06-14]. http://europepmc.org/article/MED/28615670. DOI: 10.1038/s41598-017-03828-0.
- 40. Han JC, Choi JH, Park DY, et al. Border tissue morphology is spatially associated with focal lamina cribrosa defect and deep-layer microvasculature dropout in open-angle glaucoma[J]. Am J Ophthalmol, 2019, 203: 89-102. DOI: 10.1016/j.ajo.2019.02.023.
- 41. Moghimi S, Zangwill LM, Manalastas PIC, et al. Association between lamina cribrosa defects and progressive retinal nerve fiber layer loss in glaucoma[J]. JAMA Ophthalmol, 2019, 137(4): 425-433. DOI: 10.1001/jamaophthalmol.2018.6941.
- 42. Han JC, Cho SH, Sohn DY, et al. The characteristics of lamina cribrosa defects in myopic eyes with and without open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 486-494. DOI: 10.1167/iovs.15-17722.
- 43. Sung MS, Heo MY, Heo H, et al. Bruch's membrane opening enlargement and its implication on the myopic optic nerve head [J/OL]. Sci Rep, 2019, 9(1): 19564[2019-12-20]. http://europepmc.org/article/MED/31863084. DOI: 10.1038/s41598-019-55926-w.
- 44. Sawada Y, Araie M, Ishikawa M, et al. Multiple temporal lamina cribrosa defects in myopic eyes with glaucoma and their association with visual field defects[J]. Ophthalmology, 2017, 124(11): 1600-1611. DOI: 10.1016/j.ophtha.2017.04.027.
- 45. 孙云晓, 谢媛, 刘祥祥, 等. 自发性局限性筛板缺损与青光眼视神经损伤进展的关系[J]. 中华眼科杂志, 2019, 55(5): 338-346. DOI: 10.3760/cma.j.issn.0412-4081.2019.05.007.Sun YX, Xie Y, Liu XX, et al. Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy[J]. Chin J Ophthalmol, 2019, 55(5): 338-346. DOI: 10.3760/cma.j.issn.0412-4081.2019.05.007.
- 46. Kim YK, Park KH. Lamina cribrosa defects in eyes with glaucomatous disc haemorrhage[J]. Acta Ophthalmol, 2016, 94(6): e468-473. DOI: 10.1111/aos.12903.
- 47. Mistry V, An D, Barry CJ, et al. Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma[J]. Br J Ophthalmol, 2020, 104(1): 98-103. DOI: 10.1136/bjophthalmol-2018-313775.
- 48. Nadler Z, Wang B, Schuman JS, et al. In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6459-6466. DOI: 10.1167/iovs.14-15177.
- 49. Shoji T, Kuroda H, Suzuki M, et al. Glaucomatous changes in lamina pores shape within the lamina cribrosa using wide bandwidth, femtosecond mode-locked laser OCT [J/OL]. PLoS One, 2017, 12(7): e0181675[2017-07-25]. http://europepmc.org/article/MED/28742840. DOI: 10.1371/journal.pone.0181675.
- 50. Omodaka K, Maekawa S, An G, et al. Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography [J/OL]. PLoS One, 2018, 13(11): e0207600[2018-11-21]. http://europepmc.org/article/MED/30462712. DOI: 10.1371/journal.pone.0207600.
- 51. Chen CL, Bojikian KD, Wen JC, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss[J]. JAMA Ophthalmol, 2017, 135(5): 461-468. DOI: 10.1001/jamaophthalmol.2017.0261.
- 52. Jo YH, Sung KR, Shin JW. Peripapillary and macular vessel density measurement by optical coherence tomography angiography in pseudoexfoliation and primary open angle glaucoma[J]. J Glaucoma, 2020, 29(5): 381-385. DOI: 10.1097/IJG.0000000000001464.
- 53. Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5713-5722. DOI: 10.1167/iovs.17-22865.
- 54. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect[J]. Ophthalmology, 2017, 124(5): 709-719. DOI: 10.1016/j.ophtha.2017.01.004.
- 55. Rao HL, Pradhan ZS, Weinreb RN, et al. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma[J]. J Glaucoma, 2017, 26(6): 548-554. DOI: 10.1097/IJG.0000000000000670.
- 56. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma[J]. Ophthalmology, 2016, 123(12): 2498-2508. DOI: 10.1016/j.ophtha.2016.08.041.
- 57. Akagi T, Iida Y, Nakanishi H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study[J]. Am J Ophthalmol, 2016, 168: 237-249. DOI: 10.1016/j.ajo.2016.06.009.
- 58. Suh MH, Zangwill LM, Manalastas PI, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects[J]. Ophthalmology, 2016, 123(11): 2309-2317. DOI: 10.1016/j.ophtha.2016.07.023.
- 59. Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care[J]. Curr Eye Res, 2018, 43(9): 1067-1082. DOI: 10.1080/02713683.2018.1475013.
- 60. Kumar RS, Anegondi N, Chandapura RS, et al. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6079-6088. DOI: 10.1167/iovs.16-19984.
- 61. Rao HL, Pradhan ZS, Weinreb RN, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma[J]. Am J Ophthalmol, 2016, 171: 75-83. DOI: 10.1016/j.ajo.2016.08.030.
-
Previous Article
自身免疫性多腺体综合征Ⅳ型一例 -
Next Article
Research progress of foveal avascular zone in retinal vascular disease