- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China;
Circular RNA (circRNA) is a new group of endogenous non-coding RNAs produced by back-splicing, which has multiple molecular functions such as acting as microRNA sponges, regulators of transcription and splicing, adaptors for protein-protein interaction. Recent studies have shown that circRNA play an essential role in development and progression of retinal microvascular dysfunction, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, eye diseases caused by hyperhomocysteine and ocular malignancy. In pathological conditions, the differential expression of circRNA alters the transcription and translation of corresponding genes, thus changing the activity and function of cells. CircRNA may become a new marker and prognostic indicator of fundus diseases, and its targeted intervention may also become a potential treatment for fundus diseases.
Citation: Wang Ying, Chen Xue, Liu Qinghuai. Research progress of circular RNA in ocular fundus diseases. Chinese Journal of Ocular Fundus Diseases, 2022, 38(4): 334-339. doi: 10.3760/cma.j.cn511434-20210218-00082 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs[J]. Molecular cell, 2018, 71(3): 428-442. DOI: 10.1016/j.molcel.2018.06.034. |
2. | Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. DOI: 10.1261/rna.035667.112. |
3. | Guria A, Sharma P, Natesan S, et al. Circular RNAs-the road less traveled[J/OL]. Front Mol Biosci, 2019, 6: 146[2020-01-10]. https://pubmed.ncbi.nlm.nih.gov/31998746/. DOI: 10.3389/fmolb.2019.00146. |
4. | Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. DOI: 10.1038/nature11928. |
5. | Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges[J]. Nat Rev Genet, 2016, 17(11): 679-692. DOI: 10.1038/nrg.2016.114. |
6. | Suzuki H, Zuo YH, Wang JH, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J/OL]. Nucleic Acids Res, 2006, 34(8): e63[2006-05-08]. https://pubmed.ncbi.nlm.nih.gov/16682442/. DOI: 10.1093/nar/gkl151. |
7. | Chu Q, Bai P, Zhu X, et al. Characteristics of plant circular RNAs[J]. Brief Bioinform, 2020, 21(1): 135-143. DOI: 10.1093/bib/bby111. |
8. | Zaiou M. Circular RNAs as potential biomarkers and therapeutic targets for metabolic diseases[J]. Adv Exp Med Biol, 2019, 1134: 177-191. DOI: 10.1007/978-3-030-12668-1_10. |
9. | Kramer MC, Liang D, Tatomer DC, et al. Combinatorial control of drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins[J]. Genes Dev, 2015, 29(20): 2168-2182. DOI: 10.1101/gad.270421.115. |
10. | Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806. DOI: 10.1016/j.molcel.2013.08.017. |
11. | Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J/OL]. Theranostics, 2020, 10(8): 3503-3517. DOI: 10.7150/thno.42174. |
12. | Chen X, Jiang C, Sun R, et al. Circular noncoding RNA NR3C1 acts as a miR-382-5p sponge to protect RPE functions via regulating PTEN/AKT/mTOR signaling pathway[J]. Mol Ther, 2020, 28(3): 929-945. DOI: 10.1016/j.ymthe.2020.01.010. |
13. | Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629-1642. DOI: 10.1161/CIRCULATIONAHA.117.029004. |
14. | Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. DOI: 10.1038/nsmb.2959. |
15. | Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions[J]. Development, 2016, 143(11): 1838-1847. DOI: 10.1242/dev.128074. |
16. | Lyu DB, Huang SL. The emerging role and clinical implication of human exonic circular RNA[J]. RNA Biol, 2017, 14(8): 1000-1006. DOI: 10.1080/15476286.2016.1227904. |
17. | Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14(3): 361-369. DOI: 10.1080/15476286.2017.1279788. |
18. | Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. CircRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. DOI: 10.1016/j.molcel.2014.08.019. |
19. | Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44(6): 2846-2858. DOI: 10.1093/nar/gkw027. |
20. | Chen CK, Cheng R, Demeter J, et al. Structured elements drive extensive circular RNA translation[J]. Mol Cell, 2021, 81(20): 4300-4318. DOI: 10.1016/j.molcel.2021.07.042. |
21. | Legnini I, Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22-37. DOI: 10.1016/j.molcel.2017.02.017. |
22. | Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol cell, 2017, 66(1): 9-21. DOI: 10.1016/j.molcel.2017.02.021. |
23. | Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641. DOI: 10.1038/cr.2017.31. |
24. | Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J/OL]. Nat Commun, 2016, 7: 12429[2016-08-19]. https://pubmed.ncbi.nlm.nih.gov/27539542/. DOI: 10.1038/ncomms12429. |
25. | Michalik KM, You XT, Manavski Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth[J]. Circ Res, 2014, 114(9): 1389-1397. DOI: 10.1161/CIRCRESAHA.114.303265. |
26. | Boeckel JN, Jaé N, Heumüller AW, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA[J]. Circ Res, 2015, 117(10): 884-890. DOI: 10.1161/CIRCRESAHA.115.306319. |
27. | Pan L, Lian W, Zhang X, et al. Human circular RNA-0054633 regulates high glucose-induced vascular endothelial cell dysfunction through the microRNA-218/roundabout 1 and microRNA-218/heme oxygenase-1 axes[J]. Int J Mol Med, 2018, 42(1): 597-606. DOI: 10.3892/ijmm.2018.3625. |
28. | Dang RY, Liu FL, Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis[J]. Biochem Biophys Res Commun, 2017, 490(2): 104-110. DOI: 10.1016/j.bbrc.2017.05.164. |
29. | Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J/OL]. Theranostics, 2017, 7(11): 2863-2877. DOI: 10.7150/thno.19353. |
30. | Cheng J, Liu Q, Hu N, et al. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197[J]. Gene, 2019, 709: 1-7. DOI: 10.1016/j.gene.2019.05.012. |
31. | Liu C, Ge HM, Liu BH, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci USA, 2019, 116(15): 7455-7464. DOI: 10.1073/pnas.1814874116. |
32. | Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(14): 6500-6509. DOI: 10.1167/iovs.17-22698. |
33. | Zhu K, Hu X, Chen H, et al. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI[J]. EBioMedicine, 2019, 49: 341-353. DOI: 10.1016/j.ebiom.2019.10.004. |
34. | Zou J, Liu KC, Wang WP, et al. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy[J/OL]. Life Sci, 2020, 256: 117888[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32497630/. DOI: 10.1016/j.lfs.2020.117888. |
35. | Jiang Q, Liu C, Li CP, et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction[J]. J Clin Invest, 2020, 130(7): 3833-3847. DOI: 10.1172/JCI123353. |
36. | Li Y, Cheng T, Wan CL, et al. CircRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J/OL]. Gene, 2020, 747: 144653[2020-07-15]. https://pubmed.ncbi.nlm.nih.gov/32259630/. DOI: 10.1016/j.gene.2020.144653. |
37. | Sun H, Kang X. hsa_circ_0041795 contributes to human retinal pigment epithelial cells (ARPE 19) injury induced by high glucose via sponging miR-646 and activating VEGFC[J/OL]. Gene, 2020, 747: 144654[2020-07-15]. https://pubmed.ncbi.nlm.nih.gov/32259632/. DOI: 10.1016/j.gene.2020.144654. |
38. | Wu Z, Liu B, Ma Y, et al. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood[J]. Acta Ophthalmol, 2020, 99(3): 306-313. DOI: 10.1111/aos.14585. |
39. | Wong WL, Su XY, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J/OL]. Lancet Glob Health, 2014, 2(2): e106-e116[2014-01-03]. https://pubmed.ncbi.nlm.nih.gov/25104651/. DOI: 10.1016/S2214-109X(13)70145-1. |
40. | Zhou RM, Shi LJ, Shan K, et al. Circular RNA-ZBTB44 regulates the development of choroidal neovascularization[J/OL]. Theranostics, 2020, 10(7): 3293-3307. DOI: 10.7150/thno.39488. |
41. | Su Y, Yi YX, Li L, et al. CircRNA-miRNA-mRNA network in age-related macular degeneration: From construction to identification[J/OL]. Exp Eye Res, 2021, 203: 108427[2020-12-29]. https://pubmed.ncbi.nlm.nih.gov/33383027/. DOI: 10.1016/j.exer.2020.108427. |
42. | Liu X, Zhang LW, Wang JH, et al. Investigation of circRNA expression profiles and analysis of circRNA-miRNA-mRNA networks in an animal (mouse) model of age-related macular degeneration[J]. Curr Eye Res, 2020, 45(9): 1173-1180. DOI: 10.1080/02713683.2020.1722179. |
43. | Pastor JC, Rojas J, Pastor-Idoate S, et al. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences[J]. Prog Retin Eye Res, 2016, 51: 125-155. DOI: 10.1016/j.preteyeres.2015.07.005. |
44. | Ni Y, Qin Y, Huang Z, et al. Distinct serum and vitreous inflammation-related factor profiles in patients with proliferative vitreoretinopathy[J]. Adv Ther, 2020, 37(5): 2550-2559. DOI: 10.1007/s12325-020-01325-x. |
45. | Yao J, Hu LL, Li XM, et al. Comprehensive circular RNA profiling of proliferative vitreoretinopathy and its clinical significance[J]. Biomed Pharmacother, 2019, 111: 548-554. DOI: 10.1016/j.biopha.2018.12.044. |
46. | Majumder A, Singh M, George AK, et al. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: an emerging research perspective[J]. J Cell Biochem, 2019, 120(1): 77-92. DOI: 10.1002/jcb.27603. |
47. | Singh M, George AK, Homme RP, et al. Circular RNAs profiling in the cystathionine-β-synthase mutant mouse reveals novel gene targets for hyperhomocysteinemia induced ocular disorders[J]. Exp Eye Res, 2018, 174: 80-92. DOI: 10.1016/j.exer.2018.05.026. |
48. | Ibrahim AS, Mander S, Hussein KA, et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration[J]. Oncotarget, 2016, 7(8): 8532-8545. DOI: 10.18632/oncotarget.7384. |
49. | Mohamed R, Sharma I, Ibrahim AS, et al. Hyperhomocysteinemia alters retinal endothelial cells barrier function and angiogenic potential via activation of oxidative stress[J/OL]. Sci Rep, 2017, 7(1): 11952[2017-09-20]. https://pubmed.ncbi.nlm.nih.gov/28931831/. DOI: 10.1038/s41598-017-09731-y. |
50. | Singh M, George AK, Homme RP, et al. Expression analysis of the circular RNA molecules in the human retinal cells treated with homocysteine[J]. Curr Eye Res, 2019, 44(3): 287-293. DOI: 10.1080/02713683.2018.1542005. |
51. | Yang M, Wei W. Long non-coding RNAs in retinoblastoma[J/OL]. Pathol Res Prac, 2019, 215(8): 152435[2019-05-20]. https://pubmed.ncbi.nlm.nih.gov/31202519/. DOI: 10.1016/j.prp.2019.152435. |
52. | Xing LC, Zhang LM, Feng YL, et al. Downregulation of circular RNA hsa_circ_0001649 indicates poor prognosis for retinoblastoma and regulates cell proliferation and apoptosis via AKT/mTOR signaling pathway[J]. Biomed Pharmacother, 2018, 105: 326-333. DOI: 10.1016/j.biopha.2018.05.141. |
53. | Yang M, Liu R, Li XJ, et al. miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4[J]. Mol Cells, 2014, 37(12): 873-880. DOI: 10.14348/molcells.2014.0147. |
54. | Lyu J, Wang Y, Zheng QP, et al. Reduction of circular RNA expression associated with human retinoblastoma[J]. Exp Eye Res, 2019, 184: 278-285. DOI: 10.1016/j.exer.2019.03.017. |
55. | Fu CB, Wang SC, Jin L, et al. CircTET1 inhibits retinoblastoma progression via targeting miR-492 and miR-494-3p through Wnt/β-catenin signaling pathway[J]. Curr Eye Res, 2020, 46(7): 978-987. DOI: 10.1080/02713683.2020.1843685. |
56. | Wang H, Li M, Cui H, et al. CircDHDDS/miR-361-3p/WNT3A axis promotes the development of retinoblastoma by regulating proliferation, cell cycle, migration, and invasion of retinoblastoma cells[J]. Neurochem Res, 2020, 45(11): 2691-2702. DOI: 10.1007/s11064-020-03112-0. |
57. | Liu H, Yuan HF, Xu D, et al. Circular RNA circ_0000034 upregulates STX17 level to promote human retinoblastoma development via inhibiting miR-361-3p[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12080-12092. DOI: 10.26355/eurrev_202012_23997. |
58. | Sun Z, Zhang A, Hou MY, et al. Circular RNA hsa_circ_0000034 promotes the progression of retinoblastoma via sponging microRNA-361-3p[J]. Bioengineered, 2020, 11(1): 949-957. DOI: 10.1080/21655979.2020.1814670. |
59. | Jiang Y, Xiao F, Wang L, et al. Circular RNA has_circ_0000034 accelerates retinoblastoma advancement through the miR-361-3p/ADAM19 axis[J]. Mol Cell Biochem, 2021, 476(1): 69-80. DOI: 10.1007/s11010-020-03886-5. |
60. | Zhang L, Wu J, Li Y, et al. Circ_0000527 promotes the progression of retinoblastoma by regulating miR-646/LRP6 axis[J/OL]. Cancer Cell Int, 2020, 20: 301[2020-07-10]. https://pubmed.ncbi.nlm.nih.gov/32669977/. DOI: 10.1186/s12935-020-01396-4. |
61. | Chen NN, Chao DL, Li XG. Circular RNA has_circ_0000527 participates in proliferation, invasion and migration of retinoblastoma cells via miR-646/BCL-2 axis[J]. Cell Biochem Funct, 2020, 38(8): 1036-1046. DOI: 10.1002/cbf.3535. |
62. | Zhao WB, Wang S, Qin TY, et al. Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3[J]. J Cell Biochem, 2020, 121(7): 3516-3525. DOI: 10.1002/jcb.29631. |
63. | Yang X, Li Y, Liu YM, et al. Novel circular RNA expression profile of uveal melanoma revealed by microarray[J]. Chin J Cancer Res, 2018, 30(6): 656-668. DOI: 10.21147/j.issn.1000-9604.2018.06.10. |
64. | Regier DS, Higbee J, Lund KM, et al. Diacylglycerol kinase iota regulates Ras guanyl-releasing protein 3 and inhibits Rap1 signaling[J]. Proc Natl Acad Sci USA, 2005, 102(21): 7595-7600. DOI: 10.1073/pnas.0500663102. |
65. | Li Y, Huang Q, Shi X, et al. MicroRNA 145 may play an important role in uveal melanoma cell growth by potentially targeting insulin receptor substrate-1[J]. Chin Med J (Engl), 2014, 127(8): 1410-1416. |
66. | Shang Q, Li Y, Wang H, et al. Altered expression profile of circular RNAs in conjunctival melanoma[J]. Epigenomics, 2019, 11(7): 787-804. DOI: 10.2217/epi-2019-0029. |
- 1. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs[J]. Molecular cell, 2018, 71(3): 428-442. DOI: 10.1016/j.molcel.2018.06.034.
- 2. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. DOI: 10.1261/rna.035667.112.
- 3. Guria A, Sharma P, Natesan S, et al. Circular RNAs-the road less traveled[J/OL]. Front Mol Biosci, 2019, 6: 146[2020-01-10]. https://pubmed.ncbi.nlm.nih.gov/31998746/. DOI: 10.3389/fmolb.2019.00146.
- 4. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. DOI: 10.1038/nature11928.
- 5. Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges[J]. Nat Rev Genet, 2016, 17(11): 679-692. DOI: 10.1038/nrg.2016.114.
- 6. Suzuki H, Zuo YH, Wang JH, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J/OL]. Nucleic Acids Res, 2006, 34(8): e63[2006-05-08]. https://pubmed.ncbi.nlm.nih.gov/16682442/. DOI: 10.1093/nar/gkl151.
- 7. Chu Q, Bai P, Zhu X, et al. Characteristics of plant circular RNAs[J]. Brief Bioinform, 2020, 21(1): 135-143. DOI: 10.1093/bib/bby111.
- 8. Zaiou M. Circular RNAs as potential biomarkers and therapeutic targets for metabolic diseases[J]. Adv Exp Med Biol, 2019, 1134: 177-191. DOI: 10.1007/978-3-030-12668-1_10.
- 9. Kramer MC, Liang D, Tatomer DC, et al. Combinatorial control of drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins[J]. Genes Dev, 2015, 29(20): 2168-2182. DOI: 10.1101/gad.270421.115.
- 10. Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806. DOI: 10.1016/j.molcel.2013.08.017.
- 11. Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J/OL]. Theranostics, 2020, 10(8): 3503-3517. DOI: 10.7150/thno.42174.
- 12. Chen X, Jiang C, Sun R, et al. Circular noncoding RNA NR3C1 acts as a miR-382-5p sponge to protect RPE functions via regulating PTEN/AKT/mTOR signaling pathway[J]. Mol Ther, 2020, 28(3): 929-945. DOI: 10.1016/j.ymthe.2020.01.010.
- 13. Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629-1642. DOI: 10.1161/CIRCULATIONAHA.117.029004.
- 14. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. DOI: 10.1038/nsmb.2959.
- 15. Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions[J]. Development, 2016, 143(11): 1838-1847. DOI: 10.1242/dev.128074.
- 16. Lyu DB, Huang SL. The emerging role and clinical implication of human exonic circular RNA[J]. RNA Biol, 2017, 14(8): 1000-1006. DOI: 10.1080/15476286.2016.1227904.
- 17. Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14(3): 361-369. DOI: 10.1080/15476286.2017.1279788.
- 18. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. CircRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. DOI: 10.1016/j.molcel.2014.08.019.
- 19. Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44(6): 2846-2858. DOI: 10.1093/nar/gkw027.
- 20. Chen CK, Cheng R, Demeter J, et al. Structured elements drive extensive circular RNA translation[J]. Mol Cell, 2021, 81(20): 4300-4318. DOI: 10.1016/j.molcel.2021.07.042.
- 21. Legnini I, Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22-37. DOI: 10.1016/j.molcel.2017.02.017.
- 22. Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol cell, 2017, 66(1): 9-21. DOI: 10.1016/j.molcel.2017.02.021.
- 23. Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641. DOI: 10.1038/cr.2017.31.
- 24. Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J/OL]. Nat Commun, 2016, 7: 12429[2016-08-19]. https://pubmed.ncbi.nlm.nih.gov/27539542/. DOI: 10.1038/ncomms12429.
- 25. Michalik KM, You XT, Manavski Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth[J]. Circ Res, 2014, 114(9): 1389-1397. DOI: 10.1161/CIRCRESAHA.114.303265.
- 26. Boeckel JN, Jaé N, Heumüller AW, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA[J]. Circ Res, 2015, 117(10): 884-890. DOI: 10.1161/CIRCRESAHA.115.306319.
- 27. Pan L, Lian W, Zhang X, et al. Human circular RNA-0054633 regulates high glucose-induced vascular endothelial cell dysfunction through the microRNA-218/roundabout 1 and microRNA-218/heme oxygenase-1 axes[J]. Int J Mol Med, 2018, 42(1): 597-606. DOI: 10.3892/ijmm.2018.3625.
- 28. Dang RY, Liu FL, Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis[J]. Biochem Biophys Res Commun, 2017, 490(2): 104-110. DOI: 10.1016/j.bbrc.2017.05.164.
- 29. Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J/OL]. Theranostics, 2017, 7(11): 2863-2877. DOI: 10.7150/thno.19353.
- 30. Cheng J, Liu Q, Hu N, et al. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197[J]. Gene, 2019, 709: 1-7. DOI: 10.1016/j.gene.2019.05.012.
- 31. Liu C, Ge HM, Liu BH, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci USA, 2019, 116(15): 7455-7464. DOI: 10.1073/pnas.1814874116.
- 32. Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(14): 6500-6509. DOI: 10.1167/iovs.17-22698.
- 33. Zhu K, Hu X, Chen H, et al. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI[J]. EBioMedicine, 2019, 49: 341-353. DOI: 10.1016/j.ebiom.2019.10.004.
- 34. Zou J, Liu KC, Wang WP, et al. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy[J/OL]. Life Sci, 2020, 256: 117888[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32497630/. DOI: 10.1016/j.lfs.2020.117888.
- 35. Jiang Q, Liu C, Li CP, et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction[J]. J Clin Invest, 2020, 130(7): 3833-3847. DOI: 10.1172/JCI123353.
- 36. Li Y, Cheng T, Wan CL, et al. CircRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J/OL]. Gene, 2020, 747: 144653[2020-07-15]. https://pubmed.ncbi.nlm.nih.gov/32259630/. DOI: 10.1016/j.gene.2020.144653.
- 37. Sun H, Kang X. hsa_circ_0041795 contributes to human retinal pigment epithelial cells (ARPE 19) injury induced by high glucose via sponging miR-646 and activating VEGFC[J/OL]. Gene, 2020, 747: 144654[2020-07-15]. https://pubmed.ncbi.nlm.nih.gov/32259632/. DOI: 10.1016/j.gene.2020.144654.
- 38. Wu Z, Liu B, Ma Y, et al. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood[J]. Acta Ophthalmol, 2020, 99(3): 306-313. DOI: 10.1111/aos.14585.
- 39. Wong WL, Su XY, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J/OL]. Lancet Glob Health, 2014, 2(2): e106-e116[2014-01-03]. https://pubmed.ncbi.nlm.nih.gov/25104651/. DOI: 10.1016/S2214-109X(13)70145-1.
- 40. Zhou RM, Shi LJ, Shan K, et al. Circular RNA-ZBTB44 regulates the development of choroidal neovascularization[J/OL]. Theranostics, 2020, 10(7): 3293-3307. DOI: 10.7150/thno.39488.
- 41. Su Y, Yi YX, Li L, et al. CircRNA-miRNA-mRNA network in age-related macular degeneration: From construction to identification[J/OL]. Exp Eye Res, 2021, 203: 108427[2020-12-29]. https://pubmed.ncbi.nlm.nih.gov/33383027/. DOI: 10.1016/j.exer.2020.108427.
- 42. Liu X, Zhang LW, Wang JH, et al. Investigation of circRNA expression profiles and analysis of circRNA-miRNA-mRNA networks in an animal (mouse) model of age-related macular degeneration[J]. Curr Eye Res, 2020, 45(9): 1173-1180. DOI: 10.1080/02713683.2020.1722179.
- 43. Pastor JC, Rojas J, Pastor-Idoate S, et al. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences[J]. Prog Retin Eye Res, 2016, 51: 125-155. DOI: 10.1016/j.preteyeres.2015.07.005.
- 44. Ni Y, Qin Y, Huang Z, et al. Distinct serum and vitreous inflammation-related factor profiles in patients with proliferative vitreoretinopathy[J]. Adv Ther, 2020, 37(5): 2550-2559. DOI: 10.1007/s12325-020-01325-x.
- 45. Yao J, Hu LL, Li XM, et al. Comprehensive circular RNA profiling of proliferative vitreoretinopathy and its clinical significance[J]. Biomed Pharmacother, 2019, 111: 548-554. DOI: 10.1016/j.biopha.2018.12.044.
- 46. Majumder A, Singh M, George AK, et al. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: an emerging research perspective[J]. J Cell Biochem, 2019, 120(1): 77-92. DOI: 10.1002/jcb.27603.
- 47. Singh M, George AK, Homme RP, et al. Circular RNAs profiling in the cystathionine-β-synthase mutant mouse reveals novel gene targets for hyperhomocysteinemia induced ocular disorders[J]. Exp Eye Res, 2018, 174: 80-92. DOI: 10.1016/j.exer.2018.05.026.
- 48. Ibrahim AS, Mander S, Hussein KA, et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration[J]. Oncotarget, 2016, 7(8): 8532-8545. DOI: 10.18632/oncotarget.7384.
- 49. Mohamed R, Sharma I, Ibrahim AS, et al. Hyperhomocysteinemia alters retinal endothelial cells barrier function and angiogenic potential via activation of oxidative stress[J/OL]. Sci Rep, 2017, 7(1): 11952[2017-09-20]. https://pubmed.ncbi.nlm.nih.gov/28931831/. DOI: 10.1038/s41598-017-09731-y.
- 50. Singh M, George AK, Homme RP, et al. Expression analysis of the circular RNA molecules in the human retinal cells treated with homocysteine[J]. Curr Eye Res, 2019, 44(3): 287-293. DOI: 10.1080/02713683.2018.1542005.
- 51. Yang M, Wei W. Long non-coding RNAs in retinoblastoma[J/OL]. Pathol Res Prac, 2019, 215(8): 152435[2019-05-20]. https://pubmed.ncbi.nlm.nih.gov/31202519/. DOI: 10.1016/j.prp.2019.152435.
- 52. Xing LC, Zhang LM, Feng YL, et al. Downregulation of circular RNA hsa_circ_0001649 indicates poor prognosis for retinoblastoma and regulates cell proliferation and apoptosis via AKT/mTOR signaling pathway[J]. Biomed Pharmacother, 2018, 105: 326-333. DOI: 10.1016/j.biopha.2018.05.141.
- 53. Yang M, Liu R, Li XJ, et al. miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4[J]. Mol Cells, 2014, 37(12): 873-880. DOI: 10.14348/molcells.2014.0147.
- 54. Lyu J, Wang Y, Zheng QP, et al. Reduction of circular RNA expression associated with human retinoblastoma[J]. Exp Eye Res, 2019, 184: 278-285. DOI: 10.1016/j.exer.2019.03.017.
- 55. Fu CB, Wang SC, Jin L, et al. CircTET1 inhibits retinoblastoma progression via targeting miR-492 and miR-494-3p through Wnt/β-catenin signaling pathway[J]. Curr Eye Res, 2020, 46(7): 978-987. DOI: 10.1080/02713683.2020.1843685.
- 56. Wang H, Li M, Cui H, et al. CircDHDDS/miR-361-3p/WNT3A axis promotes the development of retinoblastoma by regulating proliferation, cell cycle, migration, and invasion of retinoblastoma cells[J]. Neurochem Res, 2020, 45(11): 2691-2702. DOI: 10.1007/s11064-020-03112-0.
- 57. Liu H, Yuan HF, Xu D, et al. Circular RNA circ_0000034 upregulates STX17 level to promote human retinoblastoma development via inhibiting miR-361-3p[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12080-12092. DOI: 10.26355/eurrev_202012_23997.
- 58. Sun Z, Zhang A, Hou MY, et al. Circular RNA hsa_circ_0000034 promotes the progression of retinoblastoma via sponging microRNA-361-3p[J]. Bioengineered, 2020, 11(1): 949-957. DOI: 10.1080/21655979.2020.1814670.
- 59. Jiang Y, Xiao F, Wang L, et al. Circular RNA has_circ_0000034 accelerates retinoblastoma advancement through the miR-361-3p/ADAM19 axis[J]. Mol Cell Biochem, 2021, 476(1): 69-80. DOI: 10.1007/s11010-020-03886-5.
- 60. Zhang L, Wu J, Li Y, et al. Circ_0000527 promotes the progression of retinoblastoma by regulating miR-646/LRP6 axis[J/OL]. Cancer Cell Int, 2020, 20: 301[2020-07-10]. https://pubmed.ncbi.nlm.nih.gov/32669977/. DOI: 10.1186/s12935-020-01396-4.
- 61. Chen NN, Chao DL, Li XG. Circular RNA has_circ_0000527 participates in proliferation, invasion and migration of retinoblastoma cells via miR-646/BCL-2 axis[J]. Cell Biochem Funct, 2020, 38(8): 1036-1046. DOI: 10.1002/cbf.3535.
- 62. Zhao WB, Wang S, Qin TY, et al. Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3[J]. J Cell Biochem, 2020, 121(7): 3516-3525. DOI: 10.1002/jcb.29631.
- 63. Yang X, Li Y, Liu YM, et al. Novel circular RNA expression profile of uveal melanoma revealed by microarray[J]. Chin J Cancer Res, 2018, 30(6): 656-668. DOI: 10.21147/j.issn.1000-9604.2018.06.10.
- 64. Regier DS, Higbee J, Lund KM, et al. Diacylglycerol kinase iota regulates Ras guanyl-releasing protein 3 and inhibits Rap1 signaling[J]. Proc Natl Acad Sci USA, 2005, 102(21): 7595-7600. DOI: 10.1073/pnas.0500663102.
- 65. Li Y, Huang Q, Shi X, et al. MicroRNA 145 may play an important role in uveal melanoma cell growth by potentially targeting insulin receptor substrate-1[J]. Chin Med J (Engl), 2014, 127(8): 1410-1416.
- 66. Shang Q, Li Y, Wang H, et al. Altered expression profile of circular RNAs in conjunctival melanoma[J]. Epigenomics, 2019, 11(7): 787-804. DOI: 10.2217/epi-2019-0029.