- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
Familial exudative vitreoretinopathy (FEVR) is a serious hereditary retinal vascular disease. The clinical manifestations vary, and the severity of the patients' condition is different. In severe cases, it may lead to bilateral blindness. The pathogenic mechanism of FEVR is also complex. At present, more than ten classical and candidate pathogenic genes have been found: NDP, FZD4, LRP5, TSPAN12, CTNNB1, KIF11, ZNF408, RCBTB1, LRP6, CTNNA1, CTNND1, JAG1, ATOH7, DLG1, DOCK6, ARHGP31 and EVR3 region. These pathogenic genes are involved in Wnt/β-catenin signaling pathway, norrin/β-catenin pathway and Notch pathway. They regulate and affect the development of retinal blood vessels, hyaloid vascular system regression, endothelial cell connections, and blood retinal barrier homeostasis, ultimately leading to the occurrence and development of FEVR disease.
Citation: Yang Yiliu, Lu Fang. Research progresses on pathogenic genes and related signal pathways of familial exudative vitreoretinopathy. Chinese Journal of Ocular Fundus Diseases, 2023, 39(7): 594-599. doi: 10.3760/cma.j.cn511434-20221102-00572 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. |
|
2. |
|
3. |
|
4. |
|
5. | Naruse S, Kondo H. Ocular features associated with mutations in ATOH7 gene overlap those with familial exudative vitreoretinopathy[J/OL]. Retin Cases Brief Rep, 2022, 2022: E1[2022-02-23]. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=linkout&SEARCH=35389970.ui. DOI: 10.1097/icb.0000000000001267. [published online ahead of print]. |
6. |
|
7. |
|
8. |
|
9. | Yang M, Li S, Huang L, et al. CTNND1 variants cause familial exudative vitreoretinopathy through the Wnt/cadherin axis[J/OL]. JCI Insight, 2022, 7(14): e158428[2022-07-22]. https://doi.org/10.1172/jci.insight.158428. DOI: 10.1172/jci.insight.158428. |
10. | Zhu X, Yang M, Zhao P, et al. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling[J/OL]. J Clin Invest, 2021, 131(6): e139869[2021-03-15]. https://europepmc.org/abstract/MED/33497368. DOI: 10.1172/jci139869. |
11. |
|
12. | Tao Z, Bu S, Lu F. Two AOS genes attributed to familial exudative vitreoretinopathy with microcephaly: two case reports[J/OL]. Medicine (Baltimore), 2021, 100(9): e24633[2021-03-05]. https://europepmc.org/article/MED/33655927. DOI: 10.1097/md.0000000000024633. |
13. |
|
14. |
|
15. |
|
16. | Xiao H, Tong Y, Zhu Y, et al. Familial exudative vitreoretinopathy-related disease-causing genes and Norrin/β-catenin signal pathway: structure, function, and mutation spectrums[J/OL]. J Ophthalmol, 2019, 2019: 5782536[2019-11-16]. https://europepmc.org/abstract/MED/31827910. DOI: 10.1155/2019/5782536. |
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
|
27. | Cho C, Wang Y, Smallwood PM, et al. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers[J/OL]. Elife, 2019, 8: e45542[2019-05-08]. https://europepmc.org/abstract/MED/31066677. DOI: 10.7554/eLife.45542. |
28. |
|
29. |
|
30. |
|
31. |
|
32. |
|
33. |
|
34. |
|
35. |
|
36. |
|
37. |
|
38. | Chen J, Stahl A, Krah NM, et al. Retinal expression of Wnt-pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice[J/OL]. PLoS One, 2012, 7(1): e30203[2012-01-17]. https://europepmc.org/article/MED/22272305. DOI: 10.1371/journal.pone.0030203. |
39. |
|
40. |
|
41. |
|
42. |
|
43. |
|
44. |
|
45. |
|
46. |
|
47. |
|
48. |
|
49. |
|
50. |
|
51. |
|
52. |
|
53. |
|
54. |
|
55. |
|
56. |
|
57. |
|
- 1.
Panagiotou ES, Sanjurjo Soriano C, Poulter JA, et al Defects in the cell signaling mediator β-catenin cause the retinal vascular condition FEVR[J]. Am J Hum Genet2017 100 6 960 968 . DOI:10.1016/j.ajhg.2017.05.001 . - 2.
Dixon MW, Stem MS, Schuette JL, et al CTNNB1 mutation associated with familial exudative vitreoretinopathy (FEVR) phenotype[J]. Ophthalmic Genet2016 37 4 468 470 . DOI:10.3109/13816810.2015.1120318 . - 3.
Hu H, Xiao X, Li S, et al KIF11 mutations are a common cause of autosomal dominant familial exudative vitreoretinopathy[J]. Br J Ophthalmol2016 100 2 278 283 . DOI:10.1136/bjophthalmol-2015-306878 . - 4.
Collin RW, Nikopoulos K, Dona M, et al ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature[J]. Proc Natl Acad Sci USA2013 110 24 9856 9861 . DOI:10.1073/pnas.1220864110 . - 5. Naruse S, Kondo H. Ocular features associated with mutations in ATOH7 gene overlap those with familial exudative vitreoretinopathy[J/OL]. Retin Cases Brief Rep, 2022, 2022: E1[2022-02-23]. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=linkout&SEARCH=35389970.ui. DOI: 10.1097/icb.0000000000001267. [published online ahead of print].
- 6.
Zhang S, Li X, Liu W, et al Whole-exome sequencing identified DLG1 as a candidate gene for familial exudative vitreoretinopathy[J]. Genet Test Mol Biomarkers2021 25 5 309 316 . DOI:10.1089/gtmb.2021.0013 . - 7.
Zhang L, Zhang X, Xu H, et al Exome sequencing revealed Notch ligand JAG1 as a novel candidate gene for familial exudative vitreoretinopathy[J]. Genet Med2020 22 1 77 84 . DOI:10.1038/s41436-019-0571-5 . - 8.
Wu JH, Liu JH, Ko YC, et al Haploinsufficiency of RCBTB1 is associated with Coats disease and familial exudative vitreoretinopathy[J]. Hum Mol Genet2016 25 8 1637 1647 . DOI:10.1093/hmg/ddw041 . - 9. Yang M, Li S, Huang L, et al. CTNND1 variants cause familial exudative vitreoretinopathy through the Wnt/cadherin axis[J/OL]. JCI Insight, 2022, 7(14): e158428[2022-07-22]. https://doi.org/10.1172/jci.insight.158428. DOI: 10.1172/jci.insight.158428.
- 10. Zhu X, Yang M, Zhao P, et al. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling[J/OL]. J Clin Invest, 2021, 131(6): e139869[2021-03-15]. https://europepmc.org/abstract/MED/33497368. DOI: 10.1172/jci139869.
- 11.
Li S, Yang M, He Y, et al Variants in the Wnt co-receptor LRP6 are associated with familial exudative vitreoretinopathy[J]. J Genet Genomics2022 49 6 590 594 . DOI:10.1016/j.jgg.2021.11.010 . - 12. Tao Z, Bu S, Lu F. Two AOS genes attributed to familial exudative vitreoretinopathy with microcephaly: two case reports[J/OL]. Medicine (Baltimore), 2021, 100(9): e24633[2021-03-05]. https://europepmc.org/article/MED/33655927. DOI: 10.1097/md.0000000000024633.
- 13.
Park H, Yamamoto H, Mohn L, et al Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy[J]. Nat Commun2019 10 1 5243 . DOI:10.1038/s41467-019-13220-3 . - 14.
Cicerone AP, Dailey W, Sun M, et al A survey of multigenic protein-altering variant frequency in familial exudative vitreo-retinopathy (FEVR) patients by targeted sequencing of seven FEVR-linked genes[J]. Genes (Basel)2022 13 3 495 . DOI:10.3390/genes13030495 . - 15.
Wang S, Zhang X, Hu Y, et al Clinical and genetical features of probands and affected family members with familial exudative vitreoretinopathy in a large Chinese cohort[J]. Br J Ophthalmol2021 105 1 83 86 . DOI:10.1136/bjophthalmol-2019-315598 . - 16. Xiao H, Tong Y, Zhu Y, et al. Familial exudative vitreoretinopathy-related disease-causing genes and Norrin/β-catenin signal pathway: structure, function, and mutation spectrums[J/OL]. J Ophthalmol, 2019, 2019: 5782536[2019-11-16]. https://europepmc.org/abstract/MED/31827910. DOI: 10.1155/2019/5782536.
- 17.
Wang Z, Liu CH, Huang S, et al Wnt signaling in vascular eye diseases[J]. Prog Retin Eye Res2019 70 110 133 . DOI:10.1016/j.preteyeres.2018.11.008 . - 18.
Chen Q, Ma JX Canonical Wnt signaling in diabetic retinopathy[J]. Vision Res2017 139 47 58 . DOI:10.1016/j.visres.2017.02.007 . - 19.
Kondo H, Kusaka S, Yoshinaga A, et al Genetic variants of FZD4 and LRP5 genes in patients with advanced retinopathy of prematurity[J]. Mol Vis2013 19 476 485 . - 20.
Tuo J, Wang Y, Cheng R, et al Wnt signaling in age-related macular degeneration: human macular tissue and mouse model[J]. J Transl Med2015 13 330 . DOI:10.1186/s12967-015-0683-x . - 21.
Wang Z, Cheng R, Lee K, et al Nanoparticle-mediated expression of a Wnt pathway inhibitor ameliorates ocular neovascularization[J]. Arterioscler Thromb Vasc Biol2015 35 4 855 864 . DOI:10.1161/atvbaha.114.304627 . - 22.
Tanner A, Chan HW, Pulido JS, et al Clinical and genetic findings in CTNNA1-associated macular pattern dystrophy[J]. Ophthalmology2021 128 6 952 955 . DOI:10.1016/j.ophtha.2020.10.032 . - 23.
Cox LL, Cox TC, Moreno Uribe LM, et al Mutations in the epithelial cadherin-p120-catenin complex cause mendelian non-syndromic cleft lip with or without cleft palate[J]. Am J Hum Genet2018 102 6 1143 1157 . DOI:10.1016/j.ajhg.2018.04.009 . - 24.
Kievit A, Tessadori F, Douben H, et al Variants in members of the cadherin-catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome[J]. Eur J Hum Genet2018 26 2 210 219 . DOI:10.1038/s41431-017-0010-5 . - 25.
Singh HD, Ma JX, Takahashi Y Distinct roles of LRP5 and LRP6 in Wnt signaling regulation in the retina[J]. Biochem Biophys Res Commun2021 545 8 13 . DOI:10.1016/j.bbrc.2021.01.068 . - 26.
Mauduit O, Brulard C, Lesluyes T, et al RCBTB1 deletion is associated with metastatic outcome and contributes to docetaxel resistance in nontranslocation-related pleomorphic sarcomas[J]. Cancers (Basel)2019 11 1 81 . DOI:10.3390/cancers11010081 . - 27. Cho C, Wang Y, Smallwood PM, et al. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers[J/OL]. Elife, 2019, 8: e45542[2019-05-08]. https://europepmc.org/abstract/MED/31066677. DOI: 10.7554/eLife.45542.
- 28.
Napp LC, Augustynik M, Paesler F, et al Extrinsic Notch ligand Delta-like 1 regulates tip cell selection and vascular branching morphogenesis[J]. Circ Res2012 110 4 530 535 . DOI:10.1161/CIRCRESAHA.111.263319 . - 29.
Yang JM, Park CS, Kim SH, et al Dll4 suppresses transcytosis for arterial blood-retinal barrier homeostasis[J]. Circ Res2020 126 6 767 783 . DOI:10.1161/CIRCRESAHA.119.316476 . - 30.
Benedito R, Roca C, Sörensen I, et al The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis[J]. Cell2009 137 6 1124 1135 . DOI:10.1016/j.cell.2009.03.025 . - 31.
Pedrosa AR, Trindade A, Fernandes AC, et al Endothelial Jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1[J]. Arterioscler Thromb Vasc Biol2015 35 5 1134 1146 . DOI:10.1161/atvbaha.114.304741 . - 32.
Won HY, Lee JY, Shin DH, et al Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway[J]. FASEB J2012 26 12 5002 5013 . DOI:10.1096/fj.12-209247 . - 33.
Rodilla V, Villanueva A, Obrador-Hevia A, et al Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer[J]. Proc Natl Acad Sci USA2009 106 15 6315 6320 . DOI:10.1073/pnas.0813221106 . - 34.
Campbell M, Humphries P The blood-retina barrier: tight junctions and barrier modulation[J]. Adv Exp Med Biol2012 763 70 84 . - 35.
Díaz-Coránguez M, Ramos C, Antonetti DA The inner blood-retinal barrier: cellular basis and development[J]. Vision Res2017 139 123 137 . DOI:10.1016/j.visres.2017.05.009 . - 36.
Klaassen I, Van Noorden CJ, Schlingemann RO Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions[J]. Prog Retin Eye Res2013 34 19 48 . DOI:10.1016/j.preteyeres.2013.02.001 . - 37.
Yemanyi F, Bora K, Blomfield AK, et al Wnt signaling in inner blood-retinal barrier maintenance[J]. Int J Mol Sci2021 22 21 11877 . DOI:10.3390/ijms222111877 . - 38. Chen J, Stahl A, Krah NM, et al. Retinal expression of Wnt-pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice[J/OL]. PLoS One, 2012, 7(1): e30203[2012-01-17]. https://europepmc.org/article/MED/22272305. DOI: 10.1371/journal.pone.0030203.
- 39.
Nanes BA, Chiasson-Mackenzie C, Lowery AM, et al p120-catenin binding masks an endocytic signal conserved in classical cadherins[J]. J Cell Biol2012 199 2 365 380 . DOI:10.1083/jcb.201205029 . - 40.
Karjosukarso DW, van Gestel SHC, Qu J, et al An FEVR-associated mutation in ZNF408 alters the expression of genes involved in the development of vasculature[J]. Hum Mol Genet2018 27 20 3519 3527 . DOI:10.1093/hmg/ddy244 . - 41.
Avila-Fernandez A, Perez-Carro R, Corton M, et al Whole-exome sequencing reveals ZNF408 as a new gene associated with autosomal recessive retinitis pigmentosa with vitreal alterations[J]. Hum Mol Genet2015 24 14 4037 4048 . DOI:10.1093/hmg/ddv140 . - 42.
Karjosukarso DW, Ali Z, Peters TA, et al Modeling ZNF408-associated FEVR in zebrafish results in abnormal retinal vasculature[J]. Invest Ophthalmol Vis Sci2020 61 2 39 . DOI:10.1167/iovs.61.2.39 . - 43.
Myers SM, Collins I Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy[J]. Future Med Chem2016 8 4 463 489 . DOI:10.4155/fmc.16.5 . - 44.
Kondo H, Matsushita I, Nagata T, et al Retinal features of family members with familial exudative vitreoretinopathy caused by mutations in KIF11 gene[J]. Transl Vis Sci Technol2021 10 7 18 DOI:10.1167/tvst.10.7.18 . - 45.
Wang Y, Smallwood PM, Williams J, et al A mouse model for kinesin family member 11 (Kif11)-associated familial exudative vitreoretinopathy[J]. Hum Mol Genet2020 29 7 1121 1131 . DOI:10.1093/hmg/ddaa018 . - 46.
Khan K, Logan CV, Mckibbin M, et al Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects[J]. Hum Mol Genet2012 21 4 776 783 . DOI:10.1093/hmg/ddr509 . - 47.
Jin EZ, Huang LZ, Zhao MW, et al Atypical Adams-Oliver syndrome with typical ocular signs of familial exudative vitreoretinopathy[J]. Int J Ophthalmol2022 15 8 1249 1253 . DOI:10.18240/ijo.2022.08.04 . - 48.
Miyamoto Y, Yamauchi J, Sanbe A, et al Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth[J]. Exp Cell Res2007 313 4 791 804 . DOI:10.1016/j.yexcr.2006.11.017 . - 49.
Caron C, Degeer J, Fournier P, et al CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis[J]. Sci Rep2016 6 27485 . DOI:10.1038/srep27485 . - 50.
Wu X, Tu X, Joeng KS, et al Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling[J]. Cell2008 133 2 340 353 . DOI:10.1016/j.cell.2008.01.052 . - 51.
Downey LM, Keen TJ, Roberts E, et al A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13[J]. Am J Hum Genet2001 68 3 778 781 . DOI:10.1086/318790 . - 52.
Wang Z, Chen C, Sun L, et al Symmetry of folds in FEVR: a genotype-phenotype correlation study[J]. Exp Eye Res2019 186 107720 . DOI:10.1016/j.exer.2019.107720 . - 53.
Yang J, Xiao X, Li S, et al Severe exudative vitreoretinopathy as a common feature for CTNNB1, KIF11 and NDP variants plus sector degeneration for KIF11[J]. Am J Ophthalmol2022 235 178 187 . DOI:10.1016/j.ajo.2021.09.017 . - 54.
Seo SH, Yu YS, Park SW, et al Molecular characterization of FZD4, LRP5, and TSPAN12 in familial exudative vitreoretinopathy[J]. Invest Ophthalmol Vis Sci2015 56 9 5143 5151 . DOI:10.1167/iovs.14-15680 . - 55.
Schatz P, Khan AO Variable familial exudative vitreoretinopathy in a family harbouring variants in both FZD4 and TSPAN12[J]. Acta Ophthalmol2017 95 7 705 709 . DOI:10.1111/aos.13411 . - 56.
Li Y, Peng J, Li J, et al The characteristics of digenic familial exudative vitreoretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol2018 256 11 2149 2156 . DOI:10.1007/s00417-018-4076-8 . - 57.
Tauqeer Z, Yonekawa Y Familial exudative vitreoretinopathy: pathophysiology, diagnosis, and management[J]. Asia Pac J Ophthalmol (Phila)2018 7 3 176 182 . DOI:10.22608/apo.201855 .
-
Previous Article
Sorsby眼底营养不良一家系2例 -
Next Article
Research progress of risk factors of Leber’s hereditary optic neuropathy