1. |
Széll N, Fehér T, Maróti Z, et al. Myopia-26, the female-limited form of early-onset high myopia, occurring in a European family[J/OL]. Orphanet J Rare Dis, 2021, 16(1): 45[2021-01-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7825233/. DOI: 10.1186/s13023-021-01673-z.
|
2. |
Ye M, Ma Y, Qin YX, et al. Mutational investigation of 17 causative genes in a cohort of 113 families with nonsyndromic early-onset high myopia in northwestern China[J]. Mol Genet Genomics, 2023, 298(3): 669-682. DOI: 10.1007/s00438-023-02003-7.
|
3. |
Zhou L, Xiao X, Li S, et al. Frequent mutations of RetNet genes in eoHM: further confirmation in 325 probands and comparison with late-onset high myopia based on exome sequencing[J]. Exp Eye Res, 2018, 171: 76-91. DOI: 10.1016/j.exer.2018.02.007.
|
4. |
Yang E, Yu J, Liu X, et al. Familial whole exome sequencing study of 30 families with early-onset high myopia[J]. Invest Ophthalmol Vis Sci, 2023, 64(5): 1-8. DOI: 10.1167/iovs.65.2.40.
|
5. |
……//[M]. 盛迅伦, 庄文娟. 遗传性眼病的基础与临床. 北京: 人民卫生出版社, 2019: …….Sheng XL, Zhuang WJ. The basis and clinic of hereditary eye diseases [M]. Beijing: People's Medical Publishing House, 2019.
|
6. |
Snead MP, Richards AJ, McNinch AM, et al. Stickler syndrome-lessons from a national cohort[J]. Eye (Lond), 2022, 36(10): 1966-1972. DOI: 10.1038/s41433-021-01776-8.
|
7. |
Holmquist D, Epstein D, Olsson M, et al. Visual and ocular findings in a family with X-linked cone dysfunction and protanopia[J]. Ophthalmic Genet, 2021, 42(5): 570-576. DOI: 10.1080/13816810.2021.1938139.
|
8. |
Arepalli S, Debenedictis MM, Yuan A, et al. Severe retinal complications in Knobloch syndrome three siblings without clinically apparent occipital defects and a review of the literature[J]. Ophthalmic Genet, 2022, 6: 1-9. DOI: 10.1080/13816810.2022.2028297.
|
9. |
Zeitz C, Labs S, Lorenz B, et al. Genotyping microarray for CSNB-associated genes[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5919-5926. DOI: 10.1167/iovs.09-3548.
|
10. |
Yang Z, Peachey NS, Moshfeghi DM, et al. Mutations in the RPGR gene cause X-linked cone dystrophy[J]. Hum Mol Genet, 2002, 11(5): 605-611. DOI: 10.1093/hmg/11.5.605.
|
11. |
Yang J, Zhou L, Ouyang J, et al. Genotype-phenotype analysis of RPGR variations: reporting of 62 Chinese families and a literature review[J/OL]. Front Genet, 2021, 12: 600210[2021-06-23]. https://pubmed.ncbi.nlm.nih.gov/34745198/. DOI: 10.3389/fgene.2021.600210.
|
12. |
Aldahmesh MA, Khan AO, Mohamed JY, et al. No evidence for locus heterogeneity in Knobloch syndrome[J]. J Med Genet, 2013, 50(8): 565-566. DOI: 10.1136/jmedgenet-2013-101755.
|
13. |
Gonzalez-Iglesias E, Lopez-Vazquez A, Noval S, et al. Next-generation sequencing screening of 43 families with non-syndromic early-onset high myopia: a clinical and genetic study[J]. Int J Mol Sci, 2022, 23(8): 1-29. DOI: 10.3390/ijms23084233.
|
14. |
Sanchez-Cazorla E, Gonzalez-Atienza C, Lopez-Vazquez A, et al. Whole-exome sequencing of 21 families: candidate genes for early-onset high myopia[J/OL]. Int J Mol Sci, 2023, 24(21): 15676[2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/37958660/. DOI: 10.3390/ijms242115676.
|
15. |
Sun W, Huang L, Xu Y, et al. Exome sequencing on 298 probands with early-onset high myopia: approximately one-furth show potential pathogenic mutations in RetNet henes[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8365-8372. DOI: 10.1167/iovs.15-17555.
|
16. |
Huang L, Lai Y, Sun L, et al. High myopia is common in patients with X-linked retinopathies: myopic maculopathy analysis[J]. Retina, 2024, 44(1): 117-126. DOI: 10.1097/IAE.0000000000003934.
|
17. |
De Silva SR, Arno G, Robson AG, et al. The X-linked retinopathies: physiological insights, pathogenic mechanisms, phenotypic features and novel therapies[J/OL]. Prog Retin Eye Res, 2021, 82: 100898[2020-08-26]. https://pubmed.ncbi.nlm.nih.gov/32860923/. DOI: 10.1016/j.preteyeres.2020.100898.
|
18. |
Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms[J]. Prog Retin Eye Res, 2015, 45: 58-110. DOI: 10.1016/j.preteyeres.2014.09.001.
|
19. |
Katta M, de Guimaraes T, Fujinami-Yokokawa Y, et al. Congenital stationary night blindness: structure, function and genotype-phenotype correlations in a cohort of 122 patients[J]. Ophthalmol Retina, 2024, 8(9): 932-941. DOI: 10.1016/j.oret.2024.03.017.
|
20. |
徐敏, 杜伟. 基因新致病突变引起X连锁隐性遗传先天性静止性夜盲1例[J]. 中华实验眼科杂志, 2022, 40(12): 1206-1207. DOI: 10.3760/cma.j.cn115989-20190907-00387.Xu M, Du W. A novel NYX mutation causes X-linked recessive congenital stationary night blindness: a case report[J]. Chin J Exp Ophthalmol, 2022, 40(12): 1206-1207. DOI: 10.3760/cma.j.cn115989-20190907-00387.
|
21. |
但汉东, 宋秀胜, 李家璋. Schubert-Bornschein型先天性静止性夜盲致病的分子机制[J]. 中国实用眼科杂志, 2016, 34(5): 407-410. DOI: 10.3760/cma.j.issn.1006-4443.2016.05.002.Dan HD, Song XS, Li JZ. Molecular mechanisms underlying congenital stationary night blindness of the schbert-bornschein type[J]. Chin J of Prac Ophthalmol, 2016, 34(5): 407-410. DOI: 10.3760/cma.j.issn.1006-4443.2016.05.002.
|
22. |
Neitz M, Wagner-Schuman M, Rowlan JS, et al. Insight from opn1lw gene haplotypes into the cause and prevention of myopia[J]. Genes (Basel), 2022, 13(6): 942. DOI: 10.3390/genes13060942.
|
23. |
Haim M, Fledelius HC, Skarsholm. X-linked myopia in Danish family[J]. Acta Ophthalmol (Copenh), 1988, 66(4): 450-456. DOI: 10.1111/j.1755-3768.1988.tb04039.x.
|
24. |
Sharon D, Sandberg MA, Rabe VW, et al. RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa[J]. Am J Hum Genet, 2003, 73(5): 1131-1146. DOI: 10.1086/379379.
|
25. |
Talib M, van Schooneveld MJ, Van Cauwenbergh C, et al. The spectrum of structural and functional abnormalities in female carriers of pathogenic variants in the RPGR gene[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4123-4133. DOI: 10.1167/iovs.17-23453.
|
26. |
Wawrocka A, Skorczyk-Werner A, Wicher K, et al. Novel variants identified with next-generation sequencing in Polish patients with cone-rod dystrophy[J]. Mol Vis, 2018, 24: 326-339.
|
27. |
Sergouniotis PI, Chakarova C, Murphy C, et al. Biallelic variants in TTLL5, encoding a tubulin glutamylase, cause retinal dystrophy[J]. Am J Hum Genet, 2014, 94(5): 760-769. DOI: 10.1016/j.ajhg.2014.04.003.
|
28. |
Mahalingan KK, Keith KE, Strickland M, et al. Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes[J]. Nat Struct Mol Biol, 2020, 27(9): 802-813. DOI: 10.1038/s41594-020-0462-0.
|
29. |
Kolawole OU, Gregory-Evans CY, Bikoo R, et al. Novel pathogenic variants in Tubulin Tyrosine Like 5 (TTLL5) associated with cone-dominant retinal dystrophies and an abnormal optical coherence tomography phenotype[J]. Mol Vis, 2023, 29: 329-337.
|
30. |
Khan AO, Aldahmesh MA, Mohamed JY, et al. The distinct ophthalmic phenotype of Knobloch syndrome in children[J]. Br J Ophthalmol, 2012, 96(6): 890-895. DOI: 10.1136/bjophthalmol-2011-301396.
|
31. |
Hull S, Arno G, Ku CA, et al. Molecular and clinical findings in patients with knobloch syndrome[J]. JAMA Ophthalmol, 2016, 134(7): 753-762. DOI: 10.1001/jamaophthalmol.2016.1073.
|
32. |
Zhang LS, Li HB, Zeng J, et al. Knobloch syndrome caused by homozygous frameshift mutation of the COL18A1 gene in a Chinese pedigree[J]. Int J Ophthalmol, 2018, 11(6): 918-922. DOI: 10.18240/ijo.2018.06.04.
|
33. |
Li S, Wang Y, Sun L, et al. Knobloch syndrome associated with novel COL18A1 variants in chinese population[J/OL]. Genes (Basel), 2021, 12(10): 1512[2021-09-26]. https://pubmed.ncbi.nlm.nih.gov/34680907/. DOI: 10.3390/genes12101512.
|
34. |
陈春丽, 李筱荣. 家族性渗出性玻璃体视网膜病变的多样性研究现状[J]. 中华眼底病杂志, 2019, 35(5): 517-521. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.022.Chen CL, Li XR. Research status of diversity of familial exudative vitreoretinopathy[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 517-521. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.022.
|
35. |
Cicerone AP, Dailey W, Sun M, et al. A survey of multigenic protein-altering variant frequency in familial exudative vitreo-retinopathy (FEVR) patients by targeted sequencing of seven FEVR-linked genes[J]. Genes (Basel), 2022, 13(3): 495. DOI: 10.3390/genes13030495.
|
36. |
Wang S, Zhang X, Hu Y, et al. Clinical and genetical features of probands and affected family members with familial exudative vitreoretinopathy in a large Chinese cohort[J]. Br J Ophthalmol, 2021, 105(1): 83-86. DOI: 10.1136/bjophthalmol-2019-315598.
|
37. |
杨依柳, 陆方. 家族性渗出性玻璃体视网膜病变的致病基因与相关信号通路研究进展[J]. 中华眼底病杂志, 2023, 39(7): 594-599. DOI: 10.3760/cma.j.cn511434-20221102-00572.Yang YL, Lu F. Research progresses on pathogenic genes and related signal pathways of familial exudative vitreoretinopathy[J]. Chin J Ocul Fundus Dis, 2023, 39(7): 594-599. DOI: 10.3760/cma.j.cn511434-20221102-00572.
|
38. |
Alexander P, Fincham GS, Brown S, et al. Cambridge prophylactic protocol, retinal detachment, and Stickler syndrome[J]. N Engl J Med, 2023, 388(14): 1337-1339. DOI: 10.1056/NEJMc2211320.
|
39. |
Hoornaert KP, Vereecke I, Dewinter C, et al. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients[J]. Eur J Hum Genet, 2010, 18(8): 872-880. DOI: 10.1038/ejhg.2010.23.
|
40. |
Bath F, Swanson D, Zavala H, et al. Hearing outcomes in stickler syndrome: variation due to COL2A1 and COL11A1[J]. Cleft Palate Craniofac J, 2022, 59(8): 970-975. DOI: 10.1177/10556656211029519.
|
41. |
Sirko-Osadsa DA, Murray MA, Scott JA, et al. Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the alpha2(Ⅺ) chain of type Ⅺ collagen[J]. J Pediatr, 1998, 132(2): 368-371. DOI: 10.1016/s0022-3476(98)70466-4.
|