Optic nerve diseases seriously affect visual function, and early accurate diagnosis and effective follow-up are very important for treatment and prognosis. Optical coherence tomography (OCT) and OCT angiography (OCTA) are non-invasive and high-resolution imaging techniques, which play increasingly important roles in the diagnosis and treatment of optic nerve diseases. OCT can visually display the structure of retinal nerve fiber layer and macular area, accurately measure the thickness of nerve fiber layer and structural parameters of macular area. OCTA can clearly display the changes of microblood flow around optic disc and retinal blood vessels. The combined use of these two technologies will not only help diagnose and monitor optic nerve diseases, but also deepen our understanding of the pathogenesis of optic nerve diseases. In view of the fact that the application of OCT and OCTA in neuro-ophthalmic diseases involving the optic nerve is still in the development stage in the domestic medical community, it is urgent to formulate a guiding document to regulate and promote the application of these two technologies. To this end, based on a systematic literature review and combined with the current clinical practice of OCT and OCTA in China, we formulated the Expert consensus on the clinical application of optical coherence tomography and angiography in optic nerve diseases. This consensus comprehensively expounds the technical principles and main measurement indicators of OCT and OCTA, the specific application, examination specifications and limitations of OCT and OCTA in clinical diagnosis and follow-up of neuroophthalmic diseases involving optic nerve, aiming to improve the application level of OCT and OCTA by doctors, especially neuroophthalmologists, and better play the role of this advanced imaging technology in neuroophthalmology.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Nakayama LF, Zago Ribeiro L, de Oliveira JAE, et al. Fairness and generalizability of OCT normative databases: a comparative analysis[J]. Int J Retina Vitreous, 2023, 9(1): 48. DOI: 10.1186/s40942-023-00459-8. |
2. | Bennett JL, de Seze J, Lana-Peixoto M, et al. Neuromyelitis optica and multiple sclerosis: seeing differences through optical coherence tomography[J]. Mult Scler, 2015, 21(6): 678-688. DOI: 10.1177/1352458514567216. |
3. | Minakaran N, de Carvalho ER, Petzold A, et al. Optical coherence tomography (OCT) in neuro-ophthalmology[J]. Eye (Lond), 2021, 35(1): 17-32. DOI: 10.1038/s41433-020-01288-x. |
4. | Pujari A, Bhaskaran K, Sharma P, et al. Optical coherence tomography angiography in neuro-ophthalmology: current clinical role and future perspectives[J]. Surv Ophthalmol, 2021, 66(3): 471-481. DOI: 10.1016/j.survophthal.2020.10.009. |
5. | Petzold A, Fraser CL, Abegg M, et al. Diagnosis and classification of optic neuritis[J]. Lancet Neurol, 2022, 21(12): 1120-1134. DOI: 10.1016/S1474-4422(22)00200-9. |
6. | Kupersmith MJ, Mandel G, Anderson S, et al. Baseline, one and three month changes in the peripapillary retinal nerve fiber layer in acute optic neuritis: relation to baseline vision and MRI[J]. J Neurol Sci, 2011, 308(1-2): 117-123. DOI: 10.1016/j.jns.2011.05.039. |
7. | Pro MJ, Pons ME, Liebmann JM, et al. Imaging of the optic disc and retinal nerve fiber layer in acute optic neuritis[J]. J Neurol Sci, 2006, 250(1-2): 114-119. DOI: 10.1016/j.jns.2006.08.012. |
8. | Kupersmith MJ, Garvin MK, Wang JK, et al. Retinal ganglion cell layer thinning within one month of presentation for optic neuritis[J]. Mult Scler, 2016, 22(5): 641-648. DOI: 10.1177/1352458515598020. |
9. | Costello FE, Klistorner A, Kardon R. Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis[J]. Ophthalmic Surg Lasers Imaging, 2011, 42(Suppl): S28-40. DOI: 10.3928/15428877-20110627-03. |
10. | Savastano MC, Nociti V, Giannuzzi F, et al. Optical coherence tomography advanced parameters in patients with multiple sclerosis: ophthalmological and neurological assessments[J]. Am J Ophthalmol, 2024, 267: 41-49. DOI: 10.1016/j.ajo.2024.06.011. |
11. | Costello F, Pan YI, Yeh EA, et al. The temporal evolution of structural and functional measures after acute optic neuritis[J]. J Neurol Neurosurg Psychiatry, 2015, 86(12): 1369-1373. DOI: 10.1136/jnnp-2014-309704. |
12. | Costello F, Hodge W, Pan YI, et al. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography[J]. Mult Scler, 2008, 14(7): 893-905. DOI: 10.1177/1352458508091367. |
13. | Oertel FC, Zimmermann HG, Motamedi S, et al. Retinal changes in double-antibody seronegative neuromyelitis optica spectrum disorders[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(5): e200273[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38941573/. DOI: 10.1212/NXI.0000000000200273. |
14. | Petzold A, Balcer LJ, Calabresi PA, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis[J]. Lancet Neurol, 2017, 16(10): 797-812. DOI: 10.1016/S1474-4422(17)30278-8. |
15. | Oertel FC, Specovius S, Zimmermann HG, et al. Retinal optical coherence tomography in neuromyelitis optica[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2021, 9(2): e1132[2021-12-22]. https://pubmed.ncbi.nlm.nih.gov/34526385/. DOI: 10.1212/NXI.0000000000001068. |
16. | Pott JW, de Vries-Knoppert WA, Petzold A. The prevalence of microcystic macular changes on optical coherence tomography of the macular region in optic nerve atrophy of non-neuritis origin: a prospective study[J]. Br J Ophthalmol, 2016, 100(2): 216-221. DOI: 10.1136/bjophthalmol-2014-305737. |
17. | Saidha S, Sotirchos ES, Ibrahim MA, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study[J]. Lancet Neurol, 2012, 11(11): 963-972. DOI: 10.1016/S1474-4422(12)70213-2. |
18. | Wolff B, Azar G, Vasseur V, et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study[J/OL]. J Ophthalmol, 2014, 2014: 395189[2014-02-23]. https://pubmed.ncbi.nlm.nih.gov/24701345/. DOI: 10.1155/2014/395189. |
19. | Chen JJ, Sotirchos ES, Henderson AD, et al. OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG antibody-associated disease and multiple sclerosis: RNFL thickening in acute optic neuritis from MOGAD vs MS[J/OL]. Mult Scler Relat Disord, 2022, 58: 103525[2022-01-11]. https://pubmed.ncbi.nlm.nih.gov/35038647/. DOI: 10.1016/j.msard.2022.103525. |
20. | Feng C, Chen Q, Zhao G, et al. Clinical characteristics of optic neuritis phenotypes in a 3-year follow-up Chinese cohort[J/OL]. Sci Rep, 2021, 11(1): 14603[2021-07-16]. https://pubmed.ncbi.nlm.nih.gov/34272440/. DOI: 10.1038/s41598-021-93976-1. |
21. | Fernandes DB, Raza AS, Nogueira RG, et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography[J]. Ophthalmology, 2013, 120(2): 387-394. DOI: 10.1016/j.ophtha.2012.07.066. |
22. | Ge JY, Teo ZL, Loo JL. Recent advances in the use of optical coherence tomography in neuro-ophthalmology: a review[J]. Clin Exp Ophthalmol, 2024, 52(2): 220-233. DOI: 10.1111/ceo.14341. |
23. | Frisen L. Swelling of the optic nerve head: a staging scheme[J]. J Neurol Neurosurg Psychiatry, 1982, 45(1): 13-18. DOI: 10.1136/jnnp.45.1.13. |
24. | Sinclair AJ, Burdon MA, Nightingale PG, et al. Rating papilloedema: an evaluation of the Frisen classification in idiopathic intracranial hypertension[J]. J Neurol, 2012, 259(7): 1406-1412. DOI: 10.1007/s00415-011-6365-6. |
25. | Scott CJ, Kardon RH, Lee AG, et al. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale[J]. Arch Ophthalmol, 2010, 128(6): 705-711. DOI: 10.1001/archophthalmol.2010.94. |
26. | Chen JJ, Kardon RH. Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer[J]. J Neuroophthalmol, 2016, 36(4): 417-438. DOI: 10.1097/WNO.0000000000000422. |
27. | Optical Coherence Tomography Substudy Committee, NORDIC Idiopathic Intracranial Hypertension Study Group. Papilledema outcomes from the optical coherence tomography substudy of the idiopathic intracranial hypertension treatment trial[J]. Ophthalmology, 2015, 122(9): 1939-1945. DOI: 10.1016/j.ophtha.2015.06.003. |
28. | Chen JJ, Thurtell MJ, Longmuir RA, et al. Causes and prognosis of visual acuity loss at the time of initial presentation in idiopathic intracranial hypertension[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3850-3859. DOI: 10.1167/iovs.15-16450. |
29. | Costello F, Hamann S. Advantages and pitfalls of the use of optical coherence tomography for papilledema[J]. Curr Neurol Neurosci Rep, 2024, 24(3): 55-64. DOI: 10.1007/s11910-023-01327-6. |
30. | Kupersmith MJ, Sibony P, Mandel G, et al. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6558-6564. DOI: 10.1167/iovs.10-6782. |
31. | Gampa A, Vangipuram G, Shirazi Z, et al. Quantitative association between peripapillary Bruch's membrane shape and intracranial pressure[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2739-2745. DOI: 10.1167/iovs.17-21592. |
32. | Sibony PA, Kupersmith MJ, Kardon RH. Optical coherence tomography neuro-toolbox for the diagnosis and management of papilledema, optic disc edema, and pseudopapilledema[J]. J Neuroophthalmol, 2021, 41(1): 77-92. DOI: 10.1097/WNO.0000000000001078. |
33. | Sibony PA, Kupersmith MJ, OCT Substudy Group of the NORDIC Idiopathic Intracranial Hypertension Treatment Trial. "Paton's Folds" revisited: peripapillary wrinkles, folds, and creases in papilledema[J]. Ophthalmology, 2016, 123(6): 1397-1399. DOI: 10.1016/j.ophtha.2015.12.017. |
34. | Rodriguez Torres Y, Lee P, et al. Correlation between optic disc peripapillary capillary network and papilledema grading in patients with idiopathic intracranial hypertension: a study of optical coherence tomography angiography[J]. J Neuroophthalmol, 2021, 41(1): 48-53. DOI: 10.1097/WNO.0000000000000877. |
35. | Kesim C, Solmaz B, Pasaoglu I, et al. Analysis of the peripapillary choroidal vascular characteristics in papilledema associated with pseudotumor cerebri[J]. Optom Vis Sci, 2021, 98(4): 326-333. DOI: 10.1097/OPX.0000000000001671. |
36. | Hamann S, Malmqvist L, Costello F. Optic disc drusen: understanding an old problem from a new perspective[J]. Acta Ophthalmol, 2018, 96(7): 673-684. DOI: 10.1111/aos.13748. |
37. | Malmqvist L, Bursztyn L, Costello F, et al. The optic disc drusen studies consortium recommendations for diagnosis of optic disc drusen using optical coherence tomography[J]. J Neuroophthalmol, 2018, 38(3): 299-307. DOI: 10.1097/WNO.0000000000000585. |
38. | Silverman AL, Tatham AJ, Medeiros FA, et al. Assessment of optic nerve head drusen using enhanced depth imaging and swept source optical coherence tomography[J]. J Neuroophthalmol, 2014, 34(2): 198-205. DOI: 10.1097/WNO.0000000000000115. |
39. | Chapman JJ, Heidary G, Gise R. An overview of peripapillary hyperreflective ovoid mass-like structures[J]. Curr Opin Ophthalmol, 2022, 33(6): 494-500. DOI: 10.1097/ICU.0000000000000897. |
40. | Fraser JA, Sibony PA, Petzold A, et al. Peripapillary hyper-reflective ovoid mass-like structure (PHOMS): an optical coherence tomography marker of axoplasmic stasis in the optic nerve head[J]. J Neuroophthalmol, 2021, 41(4): 431-441. DOI: 10.1097/WNO.0000000000001203. |
41. | Yan Y, Zhou X, Chu Z, et al. Vision loss in optic disc drusen correlates with increased macular vessel diameter and flux and reduced peripapillary vascular density[J]. Am J Ophthalmol, 2020, 218: 214-224. DOI: 10.1016/j.ajo.2020.04.019. |
42. | Malmqvist L, Li XQ, Eckmann CL, et al. Optic disc drusen in children: the copenhagen child cohort 2000 eye study[J]. J Neuroophthalmol, 2018, 38(2): 140-146. DOI: 10.1097/WNO.0000000000000567. |
43. | Casado A, Rebolleda G, Guerrero L, et al. Measurement of retinal nerve fiber layer and macular ganglion cell-inner plexiform layer with spectral-domain optical coherence tomography in patients with optic nerve head drusen[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(10): 1653-1660. DOI: 10.1007/s00417-014-2773-5. |
44. | Abri Aghdam K, Aghajani A, Zand A, et al. Application of optical coherence tomography angiography in true and pseudo-optic disc swelling[J/OL]. J Ophthalmol, 2024, 2024: 1164635[2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/39380943/. DOI: 10.1155/2024/1164635. |
45. | Gaier ED, Rizzo JF 3rd, Miller JB, et al. Focal capillary dropout associated with optic disc drusen using optical coherence tomographic angiography[J]. J Neuroophthalmol, 2017, 37(4): 405-410. DOI: 10.1097/WNO.0000000000000502. |
46. | Dotan G, Goldstein M, Kesler A, et al. Long-term retinal nerve fiber layer changes following nonarteritic anterior ischemic optic neuropathy[J]. Clin Ophthalmol, 2013, 7: 735-740. DOI: 10.2147/OPTH.S42522. |
47. | Gonul S, Koktekir BE, Bakbak B, et al. Comparison of the ganglion cell complex and retinal nerve fibre layer measurements using fourier domain optical coherence tomography to detect ganglion cell loss in non-arteritic anterior ischaemic optic neuropathy[J]. Br J Ophthalmol, 2013, 97(8): 1045-1050. DOI: 10.1136/bjophthalmol-2013-303438. |
48. | Kupersmith MJ, Garvin MK, Wang JK, et al. Retinal ganglion cell layer thinning within one month of presentation for non-arteritic anterior ischemic optic neuropathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3588-3593. DOI: 10.1167/iovs.15-18736. |
49. | Akbari M, Abdi P, Fard MA, et al. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy[J]. J Neuroophthalmol, 2016, 36(2): 141-146. DOI: 10.1097/WNO.0000000000000345. |
50. | Molaie AM, Pramil V, Hedges TR 3rd, et al. Vitreoretinal findings in nonarteritic ischemic optic neuropathy[J/OL]. J Neuroophthalmol, 2022, 42(1): e124-e129[2022-04-01]. https://pubmed.ncbi.nlm.nih.gov/34001734/. DOI: 10.1097/WNO.0000000000001264. |
51. | Chapelle AC, Rakic JM, Plant GT. The occurrence of intraretinal and subretinal fluid in anterior ischemic optic neuropathy: pathogenesis, prognosis, and treatment[J]. Ophthalmology, 2023, 130(11): 1191-1200. DOI: 10.1016/j.ophtha.2023.07.015. |
52. | Lu ES, Katz R, Miller JB, et al. Peripapillary choroidal vascularity and visual correlates in non-arteritic anterior ischemic optic neuropathy using swept-source optical coherence tomography[J/OL]. Front Ophthalmol (Lausanne), 2022, 2: 848040[2022-04-03]. https://pubmed.ncbi.nlm.nih.gov/38173700/. DOI: 10.3389/fopht.2022.848040. |
53. | Hata M, Oishi A, Muraoka Y, et al. Structural and functional analyses in nonarteritic anterior ischemic optic neuropathy: optical coherence tomography angiography study[J]. J Neuroophthalmol, 2017, 37(2): 140-148. DOI: 10.1097/WNO.0000000000000470. |
54. | Fard MA, Ghahvechian H, Sahrayan A, et al. Early macular vessel density loss in acute ischemic optic neuropathy compared to papilledema: implications for pathogenesis[J]. Transl Vis Sci Technol, 2018, 7(5): 10. DOI: 10.1167/tvst.7.5.10. |
55. | Fard MA, Fakhraee G, Ghahvechian H, et al. Macular vascularity in ischemic optic neuropathy compared to glaucoma by projection-resolved optical coherence tomography angiography[J]. Am J Ophthalmol, 2020, 209: 27-34. DOI: 10.1016/j.ajo.2019.09.015. |
56. | Pellegrini M, Giannaccare G, Bernabei F, et al. Choroidal vascular changes in arteritic and nonarteritic anterior ischemic optic neuropathy[J]. Am J Ophthalmol, 2019, 205: 43-49. DOI: 10.1016/j.ajo.2019.03.028. |
57. | Gaier ED, Gilbert AL, Cestari DM, et al. Optical coherence tomographic angiography identifies peripapillary microvascular dilation and focal non-perfusion in giant cell arteritis[J]. Br J Ophthalmol, 2018, 102(8): 1141-1146. DOI: 10.1136/bjophthalmol-2017-310718. |
58. | Mairot K, Gascon P, Stolowy N, et al. Paracentral acute middle maculopathy as a specific sign of arteritic anterior ischemic optic neuropathy[J]. Am J Ophthalmol, 2023, 248: 1-7. DOI: 10.1016/j.ajo.2022.09.019. |
59. | Oddone F, Lucenteforte E, Michelessi M, et al. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies[J]. Ophthalmology, 2016, 123(5): 939-949. DOI: 10.1016/j.ophtha.2015.12.041. |
60. | Zawadzka I, Konopinska J. From the past to the present, optical coherence tomography in glaucoma: a practical guide to a common disease[J/OL]. F1000Res, 2024, 12: 1186[2024-02-19]. https://pubmed.ncbi.nlm.nih.gov/38511134/. DOI: 10.12688/f1000research.139975.2. |
61. | Sung MS, Heo H, Park SW. Structure-function relationship in advanced glaucoma after reaching the RNFL floor[J]. J Glaucoma, 2019, 28(11): 1006-1011. DOI: 10.1097/IJG.0000000000001374. |
62. | Reis AS, Sharpe GP, Yang H, et al. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography[J]. Ophthalmology, 2012, 119(4): 738-747. DOI: 10.1016/j.ophtha.2011.09.054. |
63. | Chauhan BC, O'Leary N, AlMobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter[J]. Ophthalmology, 2013, 120(3): 535-543. DOI: 10.1016/j.ophtha.2012.09.055. |
64. | Takusagawa HL, Hoguet A, Junk AK, et al. Swept-source OCT for evaluating the lamina cribrosa: a report by the American Academy of Ophthalmology[J]. Ophthalmology, 2019, 126(9): 1315-1323. DOI: 10.1016/j.ophtha.2019.03.044. |
65. | Wan KH, Lam AKN, Leung CK. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma[J]. JAMA Ophthalmol, 2018, 136(8): 866-874. DOI: 10.1001/jamaophthalmol.2018.1627. |
66. | Liu L, Edmunds B, Takusagawa HL, et al. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. Am J Ophthalmol, 2019, 207: 99-109. DOI: 10.1016/j.ajo.2019.05.024. |
67. | Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. JAMA Ophthalmol, 2015, 133(9): 1045-1052. DOI: 10.1001/jamaophthalmol.2015.2225. |
68. | Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma[J]. Ophthalmology, 2016, 123(12): 2509-2518. DOI: 10.1016/j.ophtha.2016.09.002. |
69. | Zhang Y, Ye Z, Wang M, et al. Ganglion cell complex loss precedes retinal nerve fiber layer thinning in patients with pituitary adenoma[J]. J Clin Neurosci, 2017, 43: 274-277. DOI: 10.1016/j.jocn.2017.06.008. |
70. | Monteiro MLR. Macular ganglion cell complex reduction preceding visual field loss in a patient with chiasmal compression with a 21-month follow-up[J]. J Neuroophthalmol, 2018, 38(1): 124-127. DOI: 10.1097/WNO.0000000000000625. |
71. | Monteiro ML, Leal BC, Rosa AA, et al. Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve[J]. Br J Ophthalmol, 2004, 88(7): 896-899. DOI: 10.1136/bjo.2003.038489. |
72. | Danesh-Meyer HV, Yap J, Frampton C, et al. Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography[J]. Ophthalmology, 2014, 121(8): 1516-1523. DOI: 10.1016/j.ophtha.2014.02.020. |
73. | Sibony P, Strachovsky M, Honkanen R, et al. Optical coherence tomography shape analysis of the peripapillary retinal pigment epithelium layer in presumed optic nerve sheath meningiomas[J]. J Neuroophthalmol, 2014, 34(2): 130-136. DOI: 10.1097/WNO.0000000000000107. |
74. | Orman G, Sungur G, Culha C. Assessment of inner retina layers thickness values in eyes with pituitary tumours before visual field defects occur[J]. Eye (Lond), 2021, 35(4): 1159-1164. DOI: 10.1038/s41433-020-1032-8. |
75. | Loo JL, Tian J, Miller NR, et al. Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas[J]. Br J Ophthalmol, 2013, 97(11): 1455-1458. DOI: 10.1136/bjophthalmol-2013-303449. |
76. | Danesh-Meyer HV, Papchenko T, Savino PJ, et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors[J]. Invest Ophthalmol Vis Sci, 2008, 49(5): 1879-1885. DOI: 10.1167/iovs.07-1127. |
77. | Lee GI, Kim J, Lee D, et al. Ganglion cell inner plexiform layer thickness measured by optical coherence tomography to predict visual outcome in chiasmal compression[J/OL]. Sci Rep, 2022, 12(1): 14826[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36050400/. DOI: 10.1038/s41598-022-17193-0. |
78. | Cennamo G, Solari D, Montorio D, et al. The role of OCT- angiography in predicting anatomical and functional recovery after endoscopic endonasal pituitary surgery: a 1-year longitudinal study[J/OL]. PLoS One, 2021, 16(12): e0260029[2021-12-02]. https://pubmed.ncbi.nlm.nih.gov/34855775/. DOI: 10.1371/journal.pone.0260029. |
79. | Vieira LM, Silva NF, Dias dos Santos AM, et al. Retinal ganglion cell layer analysis by optical coherence tomography in toxic and nutritional optic neuropathy[J]. J Neuroophthalmol, 2015, 35(3): 242-245. DOI: 10.1097/WNO.0000000000000229. |
80. | Kim U, Hwang JM. Early stage ethambutol optic neuropathy: retinal nerve fiber layer and optical coherence tomography[J]. Eur J Ophthalmol, 2009, 19(3): 466-469. DOI: 10.1177/112067210901900323. |
81. | Mandal S, Saxena R, Dhiman R, et al. Prospective study to evaluate incidence and indicators for early detection of ethambutol toxicity[J]. Br J Ophthalmol, 2021, 105(7): 1024-1028. DOI: 10.1136/bjophthalmol-2020-316897. |
82. | Sheng WY, Su LY, Ge W, et al. Analysis of structural injury patterns in peripapillary retinal nerve fibre layer and retinal ganglion cell layer in ethambutol-induced optic neuropathy[J]. BMC Ophthalmol, 2021, 21(1): 132. DOI: 10.1186/s12886-021-01881-y. |
83. | Icel E, Ucak T. The effects of vitamin B12 deficiency on retina and optic disk vascular density[J]. Int Ophthalmol, 2021, 41(9): 3145-3151. DOI: 10.1007/s10792-021-01879-x. |
84. | Moster SJ, Moster ML, Scannell Bryan M, et al. Retinal ganglion cell and inner plexiform layer loss correlate with visual acuity loss in LHON: a longitudinal, segmentation OCT analysis[J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3872-3883. DOI: 10.1167/iovs.15-17328. |
85. | Guy J, Feuer WJ, Porciatti V, et al. Retinal ganglion cell dysfunction in asymptomatic G11778A: Leber hereditary optic neuropathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 841-848. DOI: 10.1167/iovs.13-13365. |
86. | Balducci N, Savini G, Cascavilla ML, et al. Macular nerve fibre and ganglion cell layer changes in acute Leber's hereditary optic neuropathy[J]. Br J Ophthalmol, 2016, 100(9): 1232-1237. DOI: 10.1136/bjophthalmol-2015-307326. |
87. | De Rojas JO, Rasool N, Chen RW, et al. Optical coherence tomography angiography in Leber hereditary optic neuropathy[J]. Neurology, 2016, 87(19): 2065-2066. DOI: 10.1212/WNL.0000000000003313. |
88. | Gaier ED, Gittinger JW, Cestari DM, et al. Peripapillary capillary dilation in Leber hereditary optic neuropathy revealed by optical coherence tomographic angiography[J]. JAMA Ophthalmol, 2016, 134(11): 1332-1334. DOI: 10.1001/jamaophthalmol.2016.3593. |
89. | Balducci N, Cascavilla ML, Ciardella A, et al. Peripapillary vessel density changes in Leber's hereditary optic neuropathy: a new biomarker[J]. Clin Exp Ophthalmol, 2018, 46(9): 1055-1062. DOI: 10.1111/ceo.13326. |
90. | Park SW, Hwang JM. Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(1): 135-141. DOI: 10.1007/s00417-014-2852-7. |
91. | Ronnback C, Milea D, Larsen M. Imaging of the macula indicates early completion of structural deficit in autosomal-dominant optic atrophy[J]. Ophthalmology, 2013, 120(12): 2672-2677. DOI: 10.1016/j.ophtha.2013.08.008. |
92. | Corajevic N, Larsen M, Ronnback C. Thickness mapping of individual retinal layers and sectors by spectralis SD-OCT in autosomal dominant optic atrophy[J]. Acta Ophthalmol, 2018, 96(3): 251-256. DOI: 10.1111/aos.13588. |
93. | Ronnback C, Nissen C, Almind GJ, et al. Genotype-phenotype heterogeneity of ganglion cell and inner plexiform layer deficit in autosomal-dominant optic atrophy[J]. Acta Ophthalmol, 2015, 93(8): 762-766. DOI: 10.1111/aos.12835. |
94. | Martins A, Rodrigues TM, Soares M, et al. Peripapillary and macular morpho-vascular changes in patients with genetic or clinical diagnosis of autosomal dominant optic atrophy: a case-control study[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(5): 1019-1027. DOI: 10.1007/s00417-019-04267-5. |
95. | Cesareo M, Giannini C, Di Marino M, et al. Optical coherence tomography angiography in the multimodal assessment of the retinal posterior pole in autosomal dominant optic atrophy[J/OL]. Acta Ophthalmol, 2022, 100(3): e798-e806[2021-07-11]. https://pubmed.ncbi.nlm.nih.gov/34250739/. DOI: 10.1111/aos.14972. |
96. | Lee JY, Cho K, Park KA, et al. Analysis of retinal layer thicknesses and their clinical correlation in patients with traumatic optic neuropathy[J/OL]. PLoS One, 2016, 11(6): e0157388[2016-06-13]. https://pubmed.ncbi.nlm.nih.gov/27295139/. DOI: 10.1371/journal.pone.0157388. |
97. | Sung JY, Lee HM, Lee SB, et al. Progression of optic atrophy in traumatic optic neuropathy: retrograde neuronal degeneration in humans[J]. Neurol Sci, 2022, 43(2): 1351-1358. DOI: 10.1007/s10072-021-05448-z. |
98. | Kang MC, Han JY, Lee GI, et al. Intraretinal microvascular alterations in indirect traumatic optic neuropathy using optical coherence tomography angiography[J]. Eye (Lond), 2024, 38(6): 1133-1139. DOI: 10.1038/s41433-023-02839-8. |
99. | Liu X, Wang J, Zhang W, et al. Prognostic factors of traumatic optic neuropathy based on multimodal analysis-especially the influence of postoperative dressing change and optic nerve blood supply on prognosis[J/OL]. Front Neurol, 2023, 14: 1114384[2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/36793493/. DOI: 10.3389/fneur.2023.1114384. |
100. | Ye J, Zhu H, Yan W, et al. Retinal peripapillary microvasculature in indirect traumatic optic neuropathy predicted prognosis of endoscopic trans-ethmosphenoid optic canal decompression[J/OL]. Acta Ophthalmol, 2023, 101(2): e226-e235[2022-09-02]. https://pubmed.ncbi.nlm.nih.gov/36053015/. DOI: 10.1111/aos.15243. |
101. | Yousef YA, Finger PT. Optical coherence tomography of radiation optic neuropathy[J]. Ophthalmic Surg Lasers Imaging, 2012, 43(1): 6-12. DOI: 10.3928/15428877-20111129-09. |
102. | Skalet AH, Liu L, Binder C, et al. Quantitative OCT angiography evaluation of peripapillary retinal circulation after plaque brachytherapy[J]. Ophthalmol Retina, 2018, 2(3): 244-250. DOI: 10.1016/j.oret.2017.06.005. |
103. | Li Z, Zhan Z, Lai Y, et al. Radiation optic neuropathy diagnosis in nasopharyngeal carcinoma patients with radiation encephalopathy[J]. Eur J Ophthalmol, 2022, 32(6): 3657-3666. DOI: 10.1177/11206721221085834. |
104. | Vosoughi AR, Donaldson L, Micieli JA, et al. Maculopathies referred to neuro-ophthalmology clinic as optic neuropathies: a case series[J]. J Neuroophthalmol, 2024, 44(3): 355-359. DOI: 10.1097/WNO.0000000000001950. |
105. | Raviskanthan S, Wendt S, Ugoh PM, et al. Functional vision disorders in adults: a paradigm and nomenclature shift for ophthalmology[J]. Surv Ophthalmol, 2022, 67(1): 8-18. DOI: 10.1016/j.survophthal.2021.03.002. |
106. | Mehta N, Waheed NK. Diversity in optical coherence tomography normative databases: moving beyond race[J/OL]. Int J Retina Vitreous, 2020, 6: 5[2020-04-05]. https://pubmed.ncbi.nlm.nih.gov/32158551/. DOI: 10.1186/s40942-020-0208-5. |
107. | Celebi AR, Mirza GE. Age-related change in retinal nerve fiber layer thickness measured with spectral domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(13): 8095-8103. DOI: 10.1167/iovs.13-12634. |
108. | Langenegger SJ, Funk J, Toteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3338-3344. DOI: 10.1167/iovs.10-6611. |
109. | Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software[J/OL]. PLoS One, 2015, 10(6): e0129005[2015-06-15]. https://pubmed.ncbi.nlm.nih.gov/26076457/. DOI: 10.1371/journal.pone.0129005. |
- 1. Nakayama LF, Zago Ribeiro L, de Oliveira JAE, et al. Fairness and generalizability of OCT normative databases: a comparative analysis[J]. Int J Retina Vitreous, 2023, 9(1): 48. DOI: 10.1186/s40942-023-00459-8.
- 2. Bennett JL, de Seze J, Lana-Peixoto M, et al. Neuromyelitis optica and multiple sclerosis: seeing differences through optical coherence tomography[J]. Mult Scler, 2015, 21(6): 678-688. DOI: 10.1177/1352458514567216.
- 3. Minakaran N, de Carvalho ER, Petzold A, et al. Optical coherence tomography (OCT) in neuro-ophthalmology[J]. Eye (Lond), 2021, 35(1): 17-32. DOI: 10.1038/s41433-020-01288-x.
- 4. Pujari A, Bhaskaran K, Sharma P, et al. Optical coherence tomography angiography in neuro-ophthalmology: current clinical role and future perspectives[J]. Surv Ophthalmol, 2021, 66(3): 471-481. DOI: 10.1016/j.survophthal.2020.10.009.
- 5. Petzold A, Fraser CL, Abegg M, et al. Diagnosis and classification of optic neuritis[J]. Lancet Neurol, 2022, 21(12): 1120-1134. DOI: 10.1016/S1474-4422(22)00200-9.
- 6. Kupersmith MJ, Mandel G, Anderson S, et al. Baseline, one and three month changes in the peripapillary retinal nerve fiber layer in acute optic neuritis: relation to baseline vision and MRI[J]. J Neurol Sci, 2011, 308(1-2): 117-123. DOI: 10.1016/j.jns.2011.05.039.
- 7. Pro MJ, Pons ME, Liebmann JM, et al. Imaging of the optic disc and retinal nerve fiber layer in acute optic neuritis[J]. J Neurol Sci, 2006, 250(1-2): 114-119. DOI: 10.1016/j.jns.2006.08.012.
- 8. Kupersmith MJ, Garvin MK, Wang JK, et al. Retinal ganglion cell layer thinning within one month of presentation for optic neuritis[J]. Mult Scler, 2016, 22(5): 641-648. DOI: 10.1177/1352458515598020.
- 9. Costello FE, Klistorner A, Kardon R. Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis[J]. Ophthalmic Surg Lasers Imaging, 2011, 42(Suppl): S28-40. DOI: 10.3928/15428877-20110627-03.
- 10. Savastano MC, Nociti V, Giannuzzi F, et al. Optical coherence tomography advanced parameters in patients with multiple sclerosis: ophthalmological and neurological assessments[J]. Am J Ophthalmol, 2024, 267: 41-49. DOI: 10.1016/j.ajo.2024.06.011.
- 11. Costello F, Pan YI, Yeh EA, et al. The temporal evolution of structural and functional measures after acute optic neuritis[J]. J Neurol Neurosurg Psychiatry, 2015, 86(12): 1369-1373. DOI: 10.1136/jnnp-2014-309704.
- 12. Costello F, Hodge W, Pan YI, et al. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography[J]. Mult Scler, 2008, 14(7): 893-905. DOI: 10.1177/1352458508091367.
- 13. Oertel FC, Zimmermann HG, Motamedi S, et al. Retinal changes in double-antibody seronegative neuromyelitis optica spectrum disorders[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(5): e200273[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38941573/. DOI: 10.1212/NXI.0000000000200273.
- 14. Petzold A, Balcer LJ, Calabresi PA, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis[J]. Lancet Neurol, 2017, 16(10): 797-812. DOI: 10.1016/S1474-4422(17)30278-8.
- 15. Oertel FC, Specovius S, Zimmermann HG, et al. Retinal optical coherence tomography in neuromyelitis optica[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2021, 9(2): e1132[2021-12-22]. https://pubmed.ncbi.nlm.nih.gov/34526385/. DOI: 10.1212/NXI.0000000000001068.
- 16. Pott JW, de Vries-Knoppert WA, Petzold A. The prevalence of microcystic macular changes on optical coherence tomography of the macular region in optic nerve atrophy of non-neuritis origin: a prospective study[J]. Br J Ophthalmol, 2016, 100(2): 216-221. DOI: 10.1136/bjophthalmol-2014-305737.
- 17. Saidha S, Sotirchos ES, Ibrahim MA, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study[J]. Lancet Neurol, 2012, 11(11): 963-972. DOI: 10.1016/S1474-4422(12)70213-2.
- 18. Wolff B, Azar G, Vasseur V, et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study[J/OL]. J Ophthalmol, 2014, 2014: 395189[2014-02-23]. https://pubmed.ncbi.nlm.nih.gov/24701345/. DOI: 10.1155/2014/395189.
- 19. Chen JJ, Sotirchos ES, Henderson AD, et al. OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG antibody-associated disease and multiple sclerosis: RNFL thickening in acute optic neuritis from MOGAD vs MS[J/OL]. Mult Scler Relat Disord, 2022, 58: 103525[2022-01-11]. https://pubmed.ncbi.nlm.nih.gov/35038647/. DOI: 10.1016/j.msard.2022.103525.
- 20. Feng C, Chen Q, Zhao G, et al. Clinical characteristics of optic neuritis phenotypes in a 3-year follow-up Chinese cohort[J/OL]. Sci Rep, 2021, 11(1): 14603[2021-07-16]. https://pubmed.ncbi.nlm.nih.gov/34272440/. DOI: 10.1038/s41598-021-93976-1.
- 21. Fernandes DB, Raza AS, Nogueira RG, et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography[J]. Ophthalmology, 2013, 120(2): 387-394. DOI: 10.1016/j.ophtha.2012.07.066.
- 22. Ge JY, Teo ZL, Loo JL. Recent advances in the use of optical coherence tomography in neuro-ophthalmology: a review[J]. Clin Exp Ophthalmol, 2024, 52(2): 220-233. DOI: 10.1111/ceo.14341.
- 23. Frisen L. Swelling of the optic nerve head: a staging scheme[J]. J Neurol Neurosurg Psychiatry, 1982, 45(1): 13-18. DOI: 10.1136/jnnp.45.1.13.
- 24. Sinclair AJ, Burdon MA, Nightingale PG, et al. Rating papilloedema: an evaluation of the Frisen classification in idiopathic intracranial hypertension[J]. J Neurol, 2012, 259(7): 1406-1412. DOI: 10.1007/s00415-011-6365-6.
- 25. Scott CJ, Kardon RH, Lee AG, et al. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale[J]. Arch Ophthalmol, 2010, 128(6): 705-711. DOI: 10.1001/archophthalmol.2010.94.
- 26. Chen JJ, Kardon RH. Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer[J]. J Neuroophthalmol, 2016, 36(4): 417-438. DOI: 10.1097/WNO.0000000000000422.
- 27. Optical Coherence Tomography Substudy Committee, NORDIC Idiopathic Intracranial Hypertension Study Group. Papilledema outcomes from the optical coherence tomography substudy of the idiopathic intracranial hypertension treatment trial[J]. Ophthalmology, 2015, 122(9): 1939-1945. DOI: 10.1016/j.ophtha.2015.06.003.
- 28. Chen JJ, Thurtell MJ, Longmuir RA, et al. Causes and prognosis of visual acuity loss at the time of initial presentation in idiopathic intracranial hypertension[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3850-3859. DOI: 10.1167/iovs.15-16450.
- 29. Costello F, Hamann S. Advantages and pitfalls of the use of optical coherence tomography for papilledema[J]. Curr Neurol Neurosci Rep, 2024, 24(3): 55-64. DOI: 10.1007/s11910-023-01327-6.
- 30. Kupersmith MJ, Sibony P, Mandel G, et al. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6558-6564. DOI: 10.1167/iovs.10-6782.
- 31. Gampa A, Vangipuram G, Shirazi Z, et al. Quantitative association between peripapillary Bruch's membrane shape and intracranial pressure[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2739-2745. DOI: 10.1167/iovs.17-21592.
- 32. Sibony PA, Kupersmith MJ, Kardon RH. Optical coherence tomography neuro-toolbox for the diagnosis and management of papilledema, optic disc edema, and pseudopapilledema[J]. J Neuroophthalmol, 2021, 41(1): 77-92. DOI: 10.1097/WNO.0000000000001078.
- 33. Sibony PA, Kupersmith MJ, OCT Substudy Group of the NORDIC Idiopathic Intracranial Hypertension Treatment Trial. "Paton's Folds" revisited: peripapillary wrinkles, folds, and creases in papilledema[J]. Ophthalmology, 2016, 123(6): 1397-1399. DOI: 10.1016/j.ophtha.2015.12.017.
- 34. Rodriguez Torres Y, Lee P, et al. Correlation between optic disc peripapillary capillary network and papilledema grading in patients with idiopathic intracranial hypertension: a study of optical coherence tomography angiography[J]. J Neuroophthalmol, 2021, 41(1): 48-53. DOI: 10.1097/WNO.0000000000000877.
- 35. Kesim C, Solmaz B, Pasaoglu I, et al. Analysis of the peripapillary choroidal vascular characteristics in papilledema associated with pseudotumor cerebri[J]. Optom Vis Sci, 2021, 98(4): 326-333. DOI: 10.1097/OPX.0000000000001671.
- 36. Hamann S, Malmqvist L, Costello F. Optic disc drusen: understanding an old problem from a new perspective[J]. Acta Ophthalmol, 2018, 96(7): 673-684. DOI: 10.1111/aos.13748.
- 37. Malmqvist L, Bursztyn L, Costello F, et al. The optic disc drusen studies consortium recommendations for diagnosis of optic disc drusen using optical coherence tomography[J]. J Neuroophthalmol, 2018, 38(3): 299-307. DOI: 10.1097/WNO.0000000000000585.
- 38. Silverman AL, Tatham AJ, Medeiros FA, et al. Assessment of optic nerve head drusen using enhanced depth imaging and swept source optical coherence tomography[J]. J Neuroophthalmol, 2014, 34(2): 198-205. DOI: 10.1097/WNO.0000000000000115.
- 39. Chapman JJ, Heidary G, Gise R. An overview of peripapillary hyperreflective ovoid mass-like structures[J]. Curr Opin Ophthalmol, 2022, 33(6): 494-500. DOI: 10.1097/ICU.0000000000000897.
- 40. Fraser JA, Sibony PA, Petzold A, et al. Peripapillary hyper-reflective ovoid mass-like structure (PHOMS): an optical coherence tomography marker of axoplasmic stasis in the optic nerve head[J]. J Neuroophthalmol, 2021, 41(4): 431-441. DOI: 10.1097/WNO.0000000000001203.
- 41. Yan Y, Zhou X, Chu Z, et al. Vision loss in optic disc drusen correlates with increased macular vessel diameter and flux and reduced peripapillary vascular density[J]. Am J Ophthalmol, 2020, 218: 214-224. DOI: 10.1016/j.ajo.2020.04.019.
- 42. Malmqvist L, Li XQ, Eckmann CL, et al. Optic disc drusen in children: the copenhagen child cohort 2000 eye study[J]. J Neuroophthalmol, 2018, 38(2): 140-146. DOI: 10.1097/WNO.0000000000000567.
- 43. Casado A, Rebolleda G, Guerrero L, et al. Measurement of retinal nerve fiber layer and macular ganglion cell-inner plexiform layer with spectral-domain optical coherence tomography in patients with optic nerve head drusen[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(10): 1653-1660. DOI: 10.1007/s00417-014-2773-5.
- 44. Abri Aghdam K, Aghajani A, Zand A, et al. Application of optical coherence tomography angiography in true and pseudo-optic disc swelling[J/OL]. J Ophthalmol, 2024, 2024: 1164635[2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/39380943/. DOI: 10.1155/2024/1164635.
- 45. Gaier ED, Rizzo JF 3rd, Miller JB, et al. Focal capillary dropout associated with optic disc drusen using optical coherence tomographic angiography[J]. J Neuroophthalmol, 2017, 37(4): 405-410. DOI: 10.1097/WNO.0000000000000502.
- 46. Dotan G, Goldstein M, Kesler A, et al. Long-term retinal nerve fiber layer changes following nonarteritic anterior ischemic optic neuropathy[J]. Clin Ophthalmol, 2013, 7: 735-740. DOI: 10.2147/OPTH.S42522.
- 47. Gonul S, Koktekir BE, Bakbak B, et al. Comparison of the ganglion cell complex and retinal nerve fibre layer measurements using fourier domain optical coherence tomography to detect ganglion cell loss in non-arteritic anterior ischaemic optic neuropathy[J]. Br J Ophthalmol, 2013, 97(8): 1045-1050. DOI: 10.1136/bjophthalmol-2013-303438.
- 48. Kupersmith MJ, Garvin MK, Wang JK, et al. Retinal ganglion cell layer thinning within one month of presentation for non-arteritic anterior ischemic optic neuropathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3588-3593. DOI: 10.1167/iovs.15-18736.
- 49. Akbari M, Abdi P, Fard MA, et al. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy[J]. J Neuroophthalmol, 2016, 36(2): 141-146. DOI: 10.1097/WNO.0000000000000345.
- 50. Molaie AM, Pramil V, Hedges TR 3rd, et al. Vitreoretinal findings in nonarteritic ischemic optic neuropathy[J/OL]. J Neuroophthalmol, 2022, 42(1): e124-e129[2022-04-01]. https://pubmed.ncbi.nlm.nih.gov/34001734/. DOI: 10.1097/WNO.0000000000001264.
- 51. Chapelle AC, Rakic JM, Plant GT. The occurrence of intraretinal and subretinal fluid in anterior ischemic optic neuropathy: pathogenesis, prognosis, and treatment[J]. Ophthalmology, 2023, 130(11): 1191-1200. DOI: 10.1016/j.ophtha.2023.07.015.
- 52. Lu ES, Katz R, Miller JB, et al. Peripapillary choroidal vascularity and visual correlates in non-arteritic anterior ischemic optic neuropathy using swept-source optical coherence tomography[J/OL]. Front Ophthalmol (Lausanne), 2022, 2: 848040[2022-04-03]. https://pubmed.ncbi.nlm.nih.gov/38173700/. DOI: 10.3389/fopht.2022.848040.
- 53. Hata M, Oishi A, Muraoka Y, et al. Structural and functional analyses in nonarteritic anterior ischemic optic neuropathy: optical coherence tomography angiography study[J]. J Neuroophthalmol, 2017, 37(2): 140-148. DOI: 10.1097/WNO.0000000000000470.
- 54. Fard MA, Ghahvechian H, Sahrayan A, et al. Early macular vessel density loss in acute ischemic optic neuropathy compared to papilledema: implications for pathogenesis[J]. Transl Vis Sci Technol, 2018, 7(5): 10. DOI: 10.1167/tvst.7.5.10.
- 55. Fard MA, Fakhraee G, Ghahvechian H, et al. Macular vascularity in ischemic optic neuropathy compared to glaucoma by projection-resolved optical coherence tomography angiography[J]. Am J Ophthalmol, 2020, 209: 27-34. DOI: 10.1016/j.ajo.2019.09.015.
- 56. Pellegrini M, Giannaccare G, Bernabei F, et al. Choroidal vascular changes in arteritic and nonarteritic anterior ischemic optic neuropathy[J]. Am J Ophthalmol, 2019, 205: 43-49. DOI: 10.1016/j.ajo.2019.03.028.
- 57. Gaier ED, Gilbert AL, Cestari DM, et al. Optical coherence tomographic angiography identifies peripapillary microvascular dilation and focal non-perfusion in giant cell arteritis[J]. Br J Ophthalmol, 2018, 102(8): 1141-1146. DOI: 10.1136/bjophthalmol-2017-310718.
- 58. Mairot K, Gascon P, Stolowy N, et al. Paracentral acute middle maculopathy as a specific sign of arteritic anterior ischemic optic neuropathy[J]. Am J Ophthalmol, 2023, 248: 1-7. DOI: 10.1016/j.ajo.2022.09.019.
- 59. Oddone F, Lucenteforte E, Michelessi M, et al. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies[J]. Ophthalmology, 2016, 123(5): 939-949. DOI: 10.1016/j.ophtha.2015.12.041.
- 60. Zawadzka I, Konopinska J. From the past to the present, optical coherence tomography in glaucoma: a practical guide to a common disease[J/OL]. F1000Res, 2024, 12: 1186[2024-02-19]. https://pubmed.ncbi.nlm.nih.gov/38511134/. DOI: 10.12688/f1000research.139975.2.
- 61. Sung MS, Heo H, Park SW. Structure-function relationship in advanced glaucoma after reaching the RNFL floor[J]. J Glaucoma, 2019, 28(11): 1006-1011. DOI: 10.1097/IJG.0000000000001374.
- 62. Reis AS, Sharpe GP, Yang H, et al. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography[J]. Ophthalmology, 2012, 119(4): 738-747. DOI: 10.1016/j.ophtha.2011.09.054.
- 63. Chauhan BC, O'Leary N, AlMobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter[J]. Ophthalmology, 2013, 120(3): 535-543. DOI: 10.1016/j.ophtha.2012.09.055.
- 64. Takusagawa HL, Hoguet A, Junk AK, et al. Swept-source OCT for evaluating the lamina cribrosa: a report by the American Academy of Ophthalmology[J]. Ophthalmology, 2019, 126(9): 1315-1323. DOI: 10.1016/j.ophtha.2019.03.044.
- 65. Wan KH, Lam AKN, Leung CK. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma[J]. JAMA Ophthalmol, 2018, 136(8): 866-874. DOI: 10.1001/jamaophthalmol.2018.1627.
- 66. Liu L, Edmunds B, Takusagawa HL, et al. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. Am J Ophthalmol, 2019, 207: 99-109. DOI: 10.1016/j.ajo.2019.05.024.
- 67. Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. JAMA Ophthalmol, 2015, 133(9): 1045-1052. DOI: 10.1001/jamaophthalmol.2015.2225.
- 68. Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma[J]. Ophthalmology, 2016, 123(12): 2509-2518. DOI: 10.1016/j.ophtha.2016.09.002.
- 69. Zhang Y, Ye Z, Wang M, et al. Ganglion cell complex loss precedes retinal nerve fiber layer thinning in patients with pituitary adenoma[J]. J Clin Neurosci, 2017, 43: 274-277. DOI: 10.1016/j.jocn.2017.06.008.
- 70. Monteiro MLR. Macular ganglion cell complex reduction preceding visual field loss in a patient with chiasmal compression with a 21-month follow-up[J]. J Neuroophthalmol, 2018, 38(1): 124-127. DOI: 10.1097/WNO.0000000000000625.
- 71. Monteiro ML, Leal BC, Rosa AA, et al. Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve[J]. Br J Ophthalmol, 2004, 88(7): 896-899. DOI: 10.1136/bjo.2003.038489.
- 72. Danesh-Meyer HV, Yap J, Frampton C, et al. Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography[J]. Ophthalmology, 2014, 121(8): 1516-1523. DOI: 10.1016/j.ophtha.2014.02.020.
- 73. Sibony P, Strachovsky M, Honkanen R, et al. Optical coherence tomography shape analysis of the peripapillary retinal pigment epithelium layer in presumed optic nerve sheath meningiomas[J]. J Neuroophthalmol, 2014, 34(2): 130-136. DOI: 10.1097/WNO.0000000000000107.
- 74. Orman G, Sungur G, Culha C. Assessment of inner retina layers thickness values in eyes with pituitary tumours before visual field defects occur[J]. Eye (Lond), 2021, 35(4): 1159-1164. DOI: 10.1038/s41433-020-1032-8.
- 75. Loo JL, Tian J, Miller NR, et al. Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas[J]. Br J Ophthalmol, 2013, 97(11): 1455-1458. DOI: 10.1136/bjophthalmol-2013-303449.
- 76. Danesh-Meyer HV, Papchenko T, Savino PJ, et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors[J]. Invest Ophthalmol Vis Sci, 2008, 49(5): 1879-1885. DOI: 10.1167/iovs.07-1127.
- 77. Lee GI, Kim J, Lee D, et al. Ganglion cell inner plexiform layer thickness measured by optical coherence tomography to predict visual outcome in chiasmal compression[J/OL]. Sci Rep, 2022, 12(1): 14826[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36050400/. DOI: 10.1038/s41598-022-17193-0.
- 78. Cennamo G, Solari D, Montorio D, et al. The role of OCT- angiography in predicting anatomical and functional recovery after endoscopic endonasal pituitary surgery: a 1-year longitudinal study[J/OL]. PLoS One, 2021, 16(12): e0260029[2021-12-02]. https://pubmed.ncbi.nlm.nih.gov/34855775/. DOI: 10.1371/journal.pone.0260029.
- 79. Vieira LM, Silva NF, Dias dos Santos AM, et al. Retinal ganglion cell layer analysis by optical coherence tomography in toxic and nutritional optic neuropathy[J]. J Neuroophthalmol, 2015, 35(3): 242-245. DOI: 10.1097/WNO.0000000000000229.
- 80. Kim U, Hwang JM. Early stage ethambutol optic neuropathy: retinal nerve fiber layer and optical coherence tomography[J]. Eur J Ophthalmol, 2009, 19(3): 466-469. DOI: 10.1177/112067210901900323.
- 81. Mandal S, Saxena R, Dhiman R, et al. Prospective study to evaluate incidence and indicators for early detection of ethambutol toxicity[J]. Br J Ophthalmol, 2021, 105(7): 1024-1028. DOI: 10.1136/bjophthalmol-2020-316897.
- 82. Sheng WY, Su LY, Ge W, et al. Analysis of structural injury patterns in peripapillary retinal nerve fibre layer and retinal ganglion cell layer in ethambutol-induced optic neuropathy[J]. BMC Ophthalmol, 2021, 21(1): 132. DOI: 10.1186/s12886-021-01881-y.
- 83. Icel E, Ucak T. The effects of vitamin B12 deficiency on retina and optic disk vascular density[J]. Int Ophthalmol, 2021, 41(9): 3145-3151. DOI: 10.1007/s10792-021-01879-x.
- 84. Moster SJ, Moster ML, Scannell Bryan M, et al. Retinal ganglion cell and inner plexiform layer loss correlate with visual acuity loss in LHON: a longitudinal, segmentation OCT analysis[J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3872-3883. DOI: 10.1167/iovs.15-17328.
- 85. Guy J, Feuer WJ, Porciatti V, et al. Retinal ganglion cell dysfunction in asymptomatic G11778A: Leber hereditary optic neuropathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 841-848. DOI: 10.1167/iovs.13-13365.
- 86. Balducci N, Savini G, Cascavilla ML, et al. Macular nerve fibre and ganglion cell layer changes in acute Leber's hereditary optic neuropathy[J]. Br J Ophthalmol, 2016, 100(9): 1232-1237. DOI: 10.1136/bjophthalmol-2015-307326.
- 87. De Rojas JO, Rasool N, Chen RW, et al. Optical coherence tomography angiography in Leber hereditary optic neuropathy[J]. Neurology, 2016, 87(19): 2065-2066. DOI: 10.1212/WNL.0000000000003313.
- 88. Gaier ED, Gittinger JW, Cestari DM, et al. Peripapillary capillary dilation in Leber hereditary optic neuropathy revealed by optical coherence tomographic angiography[J]. JAMA Ophthalmol, 2016, 134(11): 1332-1334. DOI: 10.1001/jamaophthalmol.2016.3593.
- 89. Balducci N, Cascavilla ML, Ciardella A, et al. Peripapillary vessel density changes in Leber's hereditary optic neuropathy: a new biomarker[J]. Clin Exp Ophthalmol, 2018, 46(9): 1055-1062. DOI: 10.1111/ceo.13326.
- 90. Park SW, Hwang JM. Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(1): 135-141. DOI: 10.1007/s00417-014-2852-7.
- 91. Ronnback C, Milea D, Larsen M. Imaging of the macula indicates early completion of structural deficit in autosomal-dominant optic atrophy[J]. Ophthalmology, 2013, 120(12): 2672-2677. DOI: 10.1016/j.ophtha.2013.08.008.
- 92. Corajevic N, Larsen M, Ronnback C. Thickness mapping of individual retinal layers and sectors by spectralis SD-OCT in autosomal dominant optic atrophy[J]. Acta Ophthalmol, 2018, 96(3): 251-256. DOI: 10.1111/aos.13588.
- 93. Ronnback C, Nissen C, Almind GJ, et al. Genotype-phenotype heterogeneity of ganglion cell and inner plexiform layer deficit in autosomal-dominant optic atrophy[J]. Acta Ophthalmol, 2015, 93(8): 762-766. DOI: 10.1111/aos.12835.
- 94. Martins A, Rodrigues TM, Soares M, et al. Peripapillary and macular morpho-vascular changes in patients with genetic or clinical diagnosis of autosomal dominant optic atrophy: a case-control study[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(5): 1019-1027. DOI: 10.1007/s00417-019-04267-5.
- 95. Cesareo M, Giannini C, Di Marino M, et al. Optical coherence tomography angiography in the multimodal assessment of the retinal posterior pole in autosomal dominant optic atrophy[J/OL]. Acta Ophthalmol, 2022, 100(3): e798-e806[2021-07-11]. https://pubmed.ncbi.nlm.nih.gov/34250739/. DOI: 10.1111/aos.14972.
- 96. Lee JY, Cho K, Park KA, et al. Analysis of retinal layer thicknesses and their clinical correlation in patients with traumatic optic neuropathy[J/OL]. PLoS One, 2016, 11(6): e0157388[2016-06-13]. https://pubmed.ncbi.nlm.nih.gov/27295139/. DOI: 10.1371/journal.pone.0157388.
- 97. Sung JY, Lee HM, Lee SB, et al. Progression of optic atrophy in traumatic optic neuropathy: retrograde neuronal degeneration in humans[J]. Neurol Sci, 2022, 43(2): 1351-1358. DOI: 10.1007/s10072-021-05448-z.
- 98. Kang MC, Han JY, Lee GI, et al. Intraretinal microvascular alterations in indirect traumatic optic neuropathy using optical coherence tomography angiography[J]. Eye (Lond), 2024, 38(6): 1133-1139. DOI: 10.1038/s41433-023-02839-8.
- 99. Liu X, Wang J, Zhang W, et al. Prognostic factors of traumatic optic neuropathy based on multimodal analysis-especially the influence of postoperative dressing change and optic nerve blood supply on prognosis[J/OL]. Front Neurol, 2023, 14: 1114384[2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/36793493/. DOI: 10.3389/fneur.2023.1114384.
- 100. Ye J, Zhu H, Yan W, et al. Retinal peripapillary microvasculature in indirect traumatic optic neuropathy predicted prognosis of endoscopic trans-ethmosphenoid optic canal decompression[J/OL]. Acta Ophthalmol, 2023, 101(2): e226-e235[2022-09-02]. https://pubmed.ncbi.nlm.nih.gov/36053015/. DOI: 10.1111/aos.15243.
- 101. Yousef YA, Finger PT. Optical coherence tomography of radiation optic neuropathy[J]. Ophthalmic Surg Lasers Imaging, 2012, 43(1): 6-12. DOI: 10.3928/15428877-20111129-09.
- 102. Skalet AH, Liu L, Binder C, et al. Quantitative OCT angiography evaluation of peripapillary retinal circulation after plaque brachytherapy[J]. Ophthalmol Retina, 2018, 2(3): 244-250. DOI: 10.1016/j.oret.2017.06.005.
- 103. Li Z, Zhan Z, Lai Y, et al. Radiation optic neuropathy diagnosis in nasopharyngeal carcinoma patients with radiation encephalopathy[J]. Eur J Ophthalmol, 2022, 32(6): 3657-3666. DOI: 10.1177/11206721221085834.
- 104. Vosoughi AR, Donaldson L, Micieli JA, et al. Maculopathies referred to neuro-ophthalmology clinic as optic neuropathies: a case series[J]. J Neuroophthalmol, 2024, 44(3): 355-359. DOI: 10.1097/WNO.0000000000001950.
- 105. Raviskanthan S, Wendt S, Ugoh PM, et al. Functional vision disorders in adults: a paradigm and nomenclature shift for ophthalmology[J]. Surv Ophthalmol, 2022, 67(1): 8-18. DOI: 10.1016/j.survophthal.2021.03.002.
- 106. Mehta N, Waheed NK. Diversity in optical coherence tomography normative databases: moving beyond race[J/OL]. Int J Retina Vitreous, 2020, 6: 5[2020-04-05]. https://pubmed.ncbi.nlm.nih.gov/32158551/. DOI: 10.1186/s40942-020-0208-5.
- 107. Celebi AR, Mirza GE. Age-related change in retinal nerve fiber layer thickness measured with spectral domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(13): 8095-8103. DOI: 10.1167/iovs.13-12634.
- 108. Langenegger SJ, Funk J, Toteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3338-3344. DOI: 10.1167/iovs.10-6611.
- 109. Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software[J/OL]. PLoS One, 2015, 10(6): e0129005[2015-06-15]. https://pubmed.ncbi.nlm.nih.gov/26076457/. DOI: 10.1371/journal.pone.0129005.