1. |
Bessant DA, Ali RR, Bhattacharya SS. Molecular genetics and prospects for therapy of the inherited retinal dystrophies[J]. Curr Opin Genet Dev, 2001, 11(3): 307-316. DOI: 10.1016/S0959-437X(00)00195-7.
|
2. |
Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations[J/OL]. Cold Spring Harb Perspect Med, 2014, 5(2): a017111[2014-10-16]. http://perspectivesinmedicine.cshlp.org/cgi/pmidlookup?view=long&pmid=25324231. DOI: 10.1101/cshperspect.a017111.
|
3. |
Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proc Natl Acad Sci USA, 2015, 112(18): 2395-2402. DOI: 10.1073/pnas.1500185112.
|
4. |
李凤飞. 眼底荧光血管造影的不良反应及应对措施[J]. 中国实用眼科杂志, 2006, 24(6): 636-637. DOI: 10.3969/j.issn.1672-5085.2012.20.162.Li FF. The adverse reaction and countermeasures of fundus fluorescein angiography[J]. Chin J Pract Ophthalmol, 2006, 24(6): 636-637. DOI: 10.3969/j.issn.1672-5085.2012.20.162.
|
5. |
Phasukkijwatana N, Tan ACS, Chen X, et al. Optical coherence tomography angiography of type 3 neovascularisation in age-related macular degeneration after antiangiogenic therapy[J]. Br J Ophthalmol, 2017, 101(5): 597-602. DOI: 10.1136/bjophthalmol-2016-308815.
|
6. |
Moult E, Choi W, Waheed NK, et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(6): 496-505. DOI: 10.3928/23258160-20141118-03.
|
7. |
Nobre CJ, Keane PA, Sim DA, et al. Systematic evaluation of optical coherence tomography angiography in retinal vein occlusion[J]. Am J Ophthalmol, 2016, 163: 93-107. DOI: 10.1016/j.ajo.2015.11.025.
|
8. |
Matsunaga DR, Yi JJ, De Koo LO, et al. Optical coherence tomography angiography of diabetic retinopathy in human subjects[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(8): 796-805. DOI: 10.3928/23258160-20150909-03.
|
9. |
Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases[J]. Surv Ophthalmol, 2017, 62(6): 838-866. DOI: 10.1016/j.survophthal.2017.05.006.
|
10. |
Rezaei KA, Zhang Q, Chen CL, et al. Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(7): 1287-1295. DOI: 10.1007/s00417-017-3633-x.
|
11. |
Falsini B, Anselmi GM, Marangoni D, et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1064-1069. DOI: 10.1167/iovs.10-5964.
|
12. |
Zhang Y, Harrison JM, Nateras OS, et al. Decreased retinal-choroidal blood flow in retinitis pigmentosa as measured by MRI[J]. Doc Ophthalmol, 2013, 126(3): 187-197. DOI: 10.1007/s10633-013-9374-1.
|
13. |
Iacono P, Parodi MB, La SC, et al. Dynamic and static vessel analysis in patients with retinitis pigmentosa: a pilot study of vascular diameters and functionality[J]. Retina, 2017, 37(5): 998-1002. DOI: 10.1097/IAE.0000000000001301.
|
14. |
Berson EL, Rosner B, Sandberg MA, et al. Ω-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A[J]. Arch Ophthalmol, 2012, 130(6): 707-711. DOI: 10.1001/archophthalmol.2011.2580.
|
15. |
Liang SY, Lee LR. Retinitis pigmentosa associated with hypomagnesaemia[J]. Clin Exp Ophthalmol, 2010, 38(6): 645-647. DOI: 10.1111/j.1442-9071.2010.02314.x.
|
16. |
Nakazawa M, Ohguro H, Takeuchi K, et al. Effect of nilvadipine on central visual field in retinitis pigmentosa: a 30-month clinical trial[J]. Ophthalmologica, 2011, 225(2): 120-126. DOI: 10.1159/000320500.
|
17. |
Sugahara M, Miyata M, Ishihara K, et al. Optical coherence tomography angiography to estimate retinal blood flow in eyes with retinitis pigmentosa[J/OL]. Sci Rep, 2017, 7: 46396[2017-04-13]. http://dx.doi.org/10.1038/srep46396. DOI: 10.1038/srep46396.
|
18. |
Chung MM, Oh KT, Streb LM, et al. Visual outcome following subretinal hemorrhage in Best disease[J]. Retina, 2001, 21(6): 575-580. DOI: 10.1097/00006982-200112000-00003.
|
19. |
Strauss O. The retinal pigment epithelium in visual function[J]. Physiol Rev, 2005, 85(3): 845-881. DOI: 10.1152/physrev.00021.2004.
|
20. |
Shahzad R, Siddiqui MA. Choroidal neovascularization secondary to Best vitelliform macular dystrophy detected by optical coherence tomography angiography[J]. J AAPOS, 2017, 21(1): 68-70. DOI: 10.1016/j.jaapos.2016.08.018.
|
21. |
Guduru A, Gupta A, Tyagi M, et al. Optical coherence tomography angiography characterisation of Best disease and associated choroidal neovascularisation[J]. Br J Ophthalmol, 2018, 102(4): 444-447. DOI: 10.1136/bjophthalmol-2017-310586.
|
22. |
Lupidi M, Coscas G, Cagini C, et al. Optical coherence tomography angiography of a choroidal neovascularization in adult onset foveomacular vitelliform dystrophy: pearls and pitfalls[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 7638-7345. DOI: 10.1167/iovs.15-17603.
|
23. |
Toto L, Borrelli E, Mastropasqua R, et al. Adult-onset foveomacular vitelliform dystrophy evaluated by means of optical coherence tomography angiography: a comparison with dry age-related macular degeneration and healthy eyes[J]. Retina, 2018, 38(4): 731-738. DOI: 10.1097/IAE.0000000000001615.
|
24. |
Arnold JJ, Sarks JP, Killingsworth MC, et al. Adult vitelliform macular degeneration: a clinicopathological study[J]. Eye, 2003, 17(6): 717-726. DOI: 10.1038/sj.eye.6700460.
|
25. |
Coscas F, Puche N, Coscas G, et al. Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 64-69. DOI: 10.1167/iovs.13-12931.
|
26. |
Stone EM, Lotery AJ, Munier FL, et al. A single EFEMP1 mutation associated with both malattia leventineseand doyne honeycomb retinal dystrophy[J]. Nat Genet, 1999, 22(2): 199-202. DOI: 10.1038/9722.
|
27. |
Timpl R, Sasaki T, Kostka G, et al. Fibulins: a versatile family of extracellular matrix proteins[J]. Nat Rev Mol Cell Biol, 2003, 4(6): 479-489. DOI: 10.1038/nrm1130.
|
28. |
Klenotic PA, Munier FL, Marmorstein LY, et al. Tissue inhibitor of metalloproteinases-3(TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1(EFEMP1). Implications for macular degenerations[J]. J Biol Chem, 2014, 279(29): 30469-30473. DOI: 10.1074/jbc.M403026200.
|
29. |
Sohn EH, Patel PJ, Maclaren RE, et al. Responsiveness of choroidal neovascular membranes in patients with R345W mutation in fibulin 3 (doyne honeycomb retinal dystrophy) to anti-vascular endothelial growth factor therapy[J]. Arch Ophthalmol, 2011, 129(12): 1626-1628. DOI: 10.1001/archophthalmol.2011.338.
|
30. |
Serra R, Coscas F, Messaoudi N, et al. Choroidal neovascularization in malattia leventinese diagnosed using optical coherence tomography angiography[J]. Am J Ophthalmol, 2017, 176: 108-117. DOI: 10.1016/j.ajo.2016.12.027.
|
31. |
Kostka G, Giltay R, Bloch W, et al. Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice[J]. Mol Cell Biol, 2001, 21(20): 7025-7034. DOI: 10.1128/MCB.21.20.7025-7034.2001.
|
32. |
Marmorstein L. Association of EFEMP1 with malattia leventinese and age-related macular degeneration: a mini-review[J]. Ophthalmic Genet, 2004, 25(3): 219-226. DOI: 10.1080/13816810490498305.
|
33. |
Mcculloch C, Mcculloch RJ. A hereditary and clinical study of choroideremia[J]. Trans Am Acad Ophthalmol Otolaryngol, 1948, 52: 160-190.
|
34. |
Kim DY, Fingler J, Zawadzki RJ, et al. Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 85-92. DOI: 10.1167/iovs.11-8249.
|
35. |
van den Hurk JA, Hendriks W, van de Pol DJ, et al. Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline[J]. Hum Molr Genet, 1997, 6(6): 851-858. DOI: 10.1093/hmg/6.6.851.
|
36. |
Ghosh M, Mcculloch C, Parker JA. Pathological study in a female carrier of choroideremia[J]. Can J Ophthalmol, 1988, 23(4): 181-186.
|
37. |
Krock BL, Bilotta J, Perkins BD. Noncell-autonomous photoreceptor degeneration in a zebrafish model of choroideremia[J]. Proc Natl Acad Sci USA, 2007, 104(11): 4600-4605. DOI: 10.1073/pnas.0605818104.
|
38. |
Macdonald IM, Russell L, Chan CC. Choroideremia: new findings from ocular pathology and review of recent literature[J]. Surv Ophthalmol, 2009, 54(3): 401-407. DOI: 10.1016/j.survophthal.2009.02.008.
|
39. |
Shi W, van den Hurk JA, Alamo-Bethencourt V, et al. Choroideremia gene product affects trophoblast development and vascularization in mouse extra-embryonic tissues[J]. Dev Biol, 2004, 272(1): 53-65. DOI: 10.1016/j.ydbio.2004.04.016.
|
40. |
Kato M, Maruko I, Koizumi H, et al. Case report: optical coherence tomography angiography and fundus autofluorescence in the eyes with choroideremia[J/OL]. BMJ Case Rep, 2017[2017-01-06]. http://casereports.bmj.com/cgi/pmidlookup?view=long&pmid=28062428. DOI: 10.1136/bcr-2016-217682.
|
41. |
Gao SS, Patel RC, Jain N, et al. Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography[J]. Biomed Opt Express, 2016, 8(1): 48-56. DOI: 10.1364/BOE.8.000048.
|
42. |
Maclaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial[J]. Lancet, 2014, 383(9923): 1129-1137. DOI: 10.1016/S0140-6736(13)62117-0.
|
43. |
Giani A, Pellegrini M, Carini E, et al. The dark atrophy with indocyanine green angiography in Stargardt disease dark atrophy in Stargardt disease[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3999-4004. DOI: 10.1167/iovs.11-9258.
|
44. |
Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease[J]. Ophthalmology, 2003, 110(6): 1151-1158. DOI: 10.1016/S0161-6420(03)00333-6.
|
45. |
Mastropasqua R, Toto L, Borrelli E, et al. Optical coherence tomography angiography findings in Stargardt disease[J/OL]. PLoS One, 2017, 12(2): 0170343[2017-02-02]. http://dx.plos.org/10.1371/journal.pone.0170343. DOI: 10.1371/journal.pone.0170343.
|
46. |
Parodi MB, Cicinelli MV, Rabiolo A, et al. Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography[J]. Br J Ophthalmol, 2017, 101(6): 780-785. DOI: 10.1136/bjophthalmol-2016-308869.
|
47. |
Pellegrini M, Acquistapace A, Oldani M, et al. Dark atrophy: an optical coherence tomography angiography study[J]. Ophthalmology, 2016, 123(9): 1879-1886. DOI: 10.1016/j.ophtha.2016.05.041.
|
48. |
Adhi M, Read SP, Ferrara D, et al. Morphology and vascular layers of the choroid in stargardt disease analyzed using spectral-domain optical coherence tomography[J]. Am J Ophthalmol, 2015, 160(6): 1276-1284. DOI: 10.1016/j.ajo.2015.08.025.
|
49. |
Lu LJ, Ji L, Adelman RA. Novel therapeutics for Stargardt disease[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(6): 1057-1062. DOI: 10.1007/s00417-017-3619-8.
|
50. |
魏文斌, 周楠. 光相干断层扫描血管成像在眼底疾病临床应用中的不足及前景[J]. 中华眼底病杂志, 2018, 34(4): 317-322. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.002.Wei WB, Zhou N. The shortcoming and developing perspective of optical coherence tomography angiography in clinical diagnosis and treatment of ocular fundus diseases[J]. Chin J Ocul Fundus Dis, 2018, 34(4): 317-322. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.002.
|
51. |
黎晓新, 石璇. 认识光相干断层扫描血管成像技术特色, 提升光相干断层扫描血管成像技术临床应用水平[J]. 中华眼底病杂志, 2017, 33(1): 3-6. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.002.Li XX, Shi X. Clinical applications of optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2017, 33(1): 3-6. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.002.
|
52. |
王敏. 利用光相干断层扫描血管成像技术优势, 提升视网膜脉络膜血管疾病认知水平[J]. 中华眼底病杂志, 2016, 32(4): 353-356. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.003.Wang M. Better understanding retinal and choroidal vascular diseases with optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2016, 32(4): 353-356. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.003.
|