- Department of Joint Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, P.R.China. Corresponding author: WU Haishan, E-mail: wuhaishan@vip.sina.com;
Objective To review the current development in meniscus tissue engineering. Methods Recent literature concerning the development of the meniscus tissue engineering was extensively reviewed and summarized. Results Recent researches mainly focus on: selection of seed cells and research of their potential of differentiation into chondrocytes; selection of scaffold materials and research of their mechanical properties; cytokines and their mechanisms of action. Conclusion Many achievements have been made in meniscus tissue engineering. Most important topics in future research include: finding seed cells that are adapted to physiological process, are easy to culture, and have higher chondrogenic differentiation ability; looking for necessary cytokines and their mechanisms of action; finding scaffold meterials with b morphological plasticity, no antigenicity, good degradability, and mechanical property close to normal meniscus.
Citation: FU Peiliang,ZHANG Lei,WU Haishan.. DEVELOPMENTS IN MENISCUS TISSUE ENGINEERING RESEARCH. Chinese Journal of Reparative and Reconstructive Surgery, 2013, 27(4): 486-491. doi: 10.7507/1002-1892.20130110 Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Malvankar SM, Khan WS. An overview of the different approaches used in the development of meniscal tissue engineering. Curr Stem Cell Res Ther, 2012, 7(2): 157-163. |
2. | Stärke C, Kopf S, Petersen W, et al. Meniscal repair. Arthroscopy, 2009, 25(9): 1033-1044. |
3. | Pereira H, Frias AM, Oliveira JM, et al. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy, 2011, 27(12): 1706-1719. |
4. | Ballyns JJ, Wright TM, Bonassar LJ. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials, 2010, 31(26): 6756-6763. |
5. | Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431. |
6. | Killian ML, Lepinski NM, Haut RC, et al. Regional and zonal histo-morphological characteristics of the lapine menisci. Anat Rec (Hoboken), 2010, 293(12): 1991-2000. |
7. | Van der Bracht H, Verdonk R, Verbruggen G, et al. Cell-Based Meniscus Tissue Engineering. E-Book: Topics in Tissue Engineering, vol3, 2007. |
8. | Li NG, Shi ZH, Tang YP, et al. New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. J Curr Med Chem, 2011, 18(7): 977-1001. |
9. | Verdonk P, van Laer M, Verdonk R. Meniscus replacement: from allograft to tissue engineering. Sport Traumatologie, 2008, 24(2): 78-82. |
10. | Vanderploeg EJ, Imler SM, Brodkin KR, et al. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech, 2004, 37(12): 1941-1952. |
11. | Singh M, Pierpoint M, Mikos AG, et al. Chondrogenic differentiation of neonatal human dermal fibroblasts encapsulated in alginate beads with hydrostatic compression under hypoxic conditions in the presence of bone morphogenetic protein-2. J Biomed Mater Res A, 2011, 98(3): 412-424. |
12. | Forriol F. Growth factors in cartilage and meniscus repair. Injury, 2009, 40 Suppl 3: S12-16. |
13. | Gu Y, Wang Y, Dai H, et al. Chondrogenic differentiation of canine myoblasts induced by cartilage-derived morphogenetic protein-2 and transforming growth factor-β1 in vitro. Mol Med Report, 2012, 5(3): 767-772. |
14. | Riera KM, Rothfusz NE, Wilusz RE, et al. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther, 2011, 13(6): R187. |
15. | Minehara H, Urabe K, Naruse K, et al. A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2. Cell Tissue Bank, 2011, 12(3): 199-207. |
16. | Fox DB, Warnock JJ, Stoker AM, et al. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci, 2010, 88(2): 326-332. |
17. | Johns DE, Athanasiou KA. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage. Cell Tissue Res, 2008, 333(3): 439-447. |
18. | Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res, 2009, 467(12): 3165-3174. |
19. | Morito T, Muneta T, Hara K, et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford), 2008, 47(8): 1137-1143. |
20. | Zhang S, Muneta T, Morito T, et al. Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system. J Orthop Res, 2008, 26(10): 1413-1418. |
21. | De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44(8): 1928-1942. |
22. | Djouad F, Bony C, Haupl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther, 2005, 7(6): 1304-1315. |
23. | Jo CH, Ahn HJ, Kim HJ, et al. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy, 2007, 9(7): 316-327. |
24. | Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues. Arthritis Rheum, 2005, 52(8): 2521-2529. |
25. | Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchynlal stem cells: optimal condition and cmnparison with bone morrow-derived cells. J Cell Biochem, 2006, 97(1): 84-97. |
26. | Cheng NC, Estes BT, Awad HA, et al. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A, 2009, 15(2): 231-241. |
27. | 李黎, 陈景祥, 朱崇涛. Sox9基因诱导脂肪肝细胞向软骨细胞分化. 现代生物医学进展, 2010, 10(20): 3851-3853. |
28. | 蔡增苗, 林昭静, 任富亮. 脂肪干细胞在软骨组织工程中的应用. 中国医药指南, 2011, 9(16): 217-218. |
29. | Mandal BB, Park SH, Gil ES, et al. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials, 2011, 32(2): 639-651. |
30. | Zellner J, Mueller M, Berner A, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A, 2010, 94(4): 1150-1161. |
31. | Ionescu LC, Lee GC, Huang KL, et al. Growth factor supplementation improves native and engineered meniscus repair in vitro. Acta Biomater, 2012, 8(10): 3687-3694. |
32. | Hegert C, Kramer J, Hargus G, et al. Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci, 2002, 115(Pt 23): 4617-4628. |
33. | Hwang NS, Varghese S, Zhang Z, et al. Chondrogenie differentiation of human embryonic stem cell-derived ceils in arginine-glycine-aspartate—modified hydrogels. Tissue Eng, 2006, 12(9): 2695-2706. |
34. | Nakajima M, Wakitani S, Harada Y, et al. In vivo mechanical condition plays an important role for appearance of cartilage tissue in ES cell transplanted joint. J Orthop Res, 2008, 26(1): 10-17. |
35. | Koay EJ, Hoben GM, Athanasiou KA. Tissue engineering with chondmgenically differentiated human embryonic stem cells. J Stem Cells, 2007, 25(9): 2183-2190. |
36. | Kramer J, Hegert C, Guan K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. J Mech Dev, 2000, 92(2): 193-205. |
37. | Steiuert AF, Palmer GD, Capito R, et al. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta1 complementary deoxyribonucleic acid. J Tissue Eng, 2007, 13(9): 2227-2237. |
38. | Steadman JR, Rodkey WG. Tissue-engeered collagen meniscus implants: 5- to 6- year feasibility study results. J Arthroscopy, 2005, 21(5): 515-525. |
39. | Martinek V, Ueblacker P, Braun K, et al. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg, 2005, 126(4): 228-234. |
40. | Walsh CJ, Goodman D, Caplan AI, et al. Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng, 1999, 5(4): 327-337. |
41. | Scotti C, Pozzi A, Mangiavini L, et al. Healing of meniscal tissue by cellular fibrin glue: an in vivo study. J Knee Surg Sports Traumatol Arthrosc, 2009, 17(6): 645-651. |
42. | Reckers LJ, Fagundes DJ, Cohen M. The ineffectiveness of fibrin glue and cyanoacrylate on fixation of meniscus transplants in rabbits. Knee, 2009, 16(4): 290-294. |
43. | Allman AJ, McPherson TB, Badylak SF, et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001, 71(11): 1631-1640. |
44. | Sarikaya A, Record R, Wu CC, et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng, 2002, 8(1): 63-71. |
45. | Grimes M, Pembroke JT, McGloughlin T. The effect of choice of sterilisation method on the biocompatibility and biodegradability of SIS (small intestinal submucosa). Biomed Mater Eng, 2005, 15(1-2): 65-71. |
46. | Roeder R, Wolfe J, Lianakis N, et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS) small-diameter vascular grafts. Boimed Mater Res, 1999, 47(1): 65-70. |
47. | Nihsen ES, Johnson CE, Hiles MC, et al. Bioactivity of small intestinal submucosa and oxidized regenerated cellulose/collagen. Adv Skin Wound Care, 2008, 21(10): 479-486. |
48. | Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3): 480-486. |
49. | Tan Y, Zhang Y, Pei M. Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa—a pilot study to engineer meniscus tissue constructs. Tissue Eng Part A, 2010, 16(1): 67-79. |
50. | Cook JL, Fox DB, Malaviya P, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med, 2006, 34(1): 32-42. |
51. | Tienen TG, Heijkants RG, de Groot JH, et al. Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med, 2006, 34(1): 64-71. |
52. | Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng, 2005, 11(7-8): 1095-1104. |
53. | Eli N, Oragui E, Khan W. Advances in meniscal tissue engineering. Ortop Traumatol Rehabil, 2011, 13(4): 319-326. |
54. | Stapleton TW, Ingram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242. |
55. | Mouzopoulos G, Siebold R. Partial meniscus substitution with tissue-engineered scaffold: an overview. Clin Sports Med, 2012, 31(1): 167-181. |
56. | Stabile KJ, Odom D, Smith TL, et al. An acellular, allograft-derived meniscus scaffold in an ovine model. Arthroscopy, 2010, 26(7): 936-948. |
57. | Sommerlath K, Gillquist J. The effect of meniscal prosthesis on knee biomechanics and cartilage. An experimental study in rabbits. Am J Sports Med, 1992, 20(1): 73-81. |
58. | Messner K, Gillquist J. Prosthetic replacement of the rabbit medial menisus. J Biomed Mater Res, 1993, 27(9): 1165-1173. |
59. | Testa Pezzin AP, Cardoso TP, do Carmo Alberto Rincon M, et al. Bioreabsorbable polymer scaffold as temporary meniscal prosthesis. Artif Organs, 2003, 27(5): 428-431. |
60. | Kobayashi M. A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed Mater Eng, 2004, 14(4): 505-515. |
61. | Gunja NJ, Huey DJ, James RA, et al. Effects of agarose mould compliance and surface roughness on self-assembled meniscus-shaped constructs. J Tissue Eng Regen Med, 2009, 3(7): 521-530. |
62. | Macbarb RF, Makris EA, Hu JC, et al. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater, 2013, 9(1): 4626-4634. |
63. | Bodin A, Concaro S, Brittberg M, et al. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med, 2007, 1(5): 406-408. |
64. | Lietman SA, Hobbs W, Inoue N, et al. Effects of selected growth factors on porcine meniscus in chemically defined medium. Orthopedics, 2003, 26(8): 799-803. |
65. | Imler SM, Doshi AN, Levenston ME. Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage, 2004, 12(9): 736-744. |
66. | Pangborn CA, Athanasiou KA. Growth factors and fibrochondrocytes in scaffolds. J Orthop Res, 2005, 23(5): 1184-1190. |
67. | Goessler UR, Bugert P, Bieback K, et al. In-vitro analysis of the expression of TGFbeta -superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett, 2005, 10(2): 345-362. |
68. | Lin PS, Chang MC, Chan CP, et al. Transforming growth factor β1 down-regulates Runx-2 and alkaline phosphatase activity of human dental pulp cells via ALK5/Smad2/3 signaling. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 111(3): 394-400. |
69. | Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum, 2005, 52(8): 2521-2529. |
70. | Shirasawa S, SekiyaI, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchynlal stem cells: optimal condition and cmnparison with bone morrow-derived cells. J Cell Biochem, 2006, 97(1): 84-97. |
71. | Horie M, Sekiya I, Muneta T, et al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells, 2009, 27(4): 878-887. |
72. | Rawadi G, Vayssière B, Dunn F, et al. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res, 2003, 18(10): 1842-1853. |
73. | Ming LG, Ge BF, Wang MG, et al. Comparison between 8-prenylnarigenin and narigenin concerning their activities on promotion of rat bone marrow stromal cells’ osteogenic differentiation in vitro. Cell Prolif, 2012, 45(6): 508-515. |
74. | Fukumoto T, Sperling JW, Sanyal A, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage, 2003, 11(1): 55-64. |
75. | Bhindi R, Brieger D, Ishii H, et al. Fibroblast growth factor 2 and the transcription factor Egr-1 localise to endothelial cell microvascular channels in human coronary artery occlusion. Thromb Haemost, 2005, 93(1): 172-174. |
- 1. Malvankar SM, Khan WS. An overview of the different approaches used in the development of meniscal tissue engineering. Curr Stem Cell Res Ther, 2012, 7(2): 157-163.
- 2. Stärke C, Kopf S, Petersen W, et al. Meniscal repair. Arthroscopy, 2009, 25(9): 1033-1044.
- 3. Pereira H, Frias AM, Oliveira JM, et al. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy, 2011, 27(12): 1706-1719.
- 4. Ballyns JJ, Wright TM, Bonassar LJ. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials, 2010, 31(26): 6756-6763.
- 5. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431.
- 6. Killian ML, Lepinski NM, Haut RC, et al. Regional and zonal histo-morphological characteristics of the lapine menisci. Anat Rec (Hoboken), 2010, 293(12): 1991-2000.
- 7. Van der Bracht H, Verdonk R, Verbruggen G, et al. Cell-Based Meniscus Tissue Engineering. E-Book: Topics in Tissue Engineering, vol3, 2007.
- 8. Li NG, Shi ZH, Tang YP, et al. New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. J Curr Med Chem, 2011, 18(7): 977-1001.
- 9. Verdonk P, van Laer M, Verdonk R. Meniscus replacement: from allograft to tissue engineering. Sport Traumatologie, 2008, 24(2): 78-82.
- 10. Vanderploeg EJ, Imler SM, Brodkin KR, et al. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech, 2004, 37(12): 1941-1952.
- 11. Singh M, Pierpoint M, Mikos AG, et al. Chondrogenic differentiation of neonatal human dermal fibroblasts encapsulated in alginate beads with hydrostatic compression under hypoxic conditions in the presence of bone morphogenetic protein-2. J Biomed Mater Res A, 2011, 98(3): 412-424.
- 12. Forriol F. Growth factors in cartilage and meniscus repair. Injury, 2009, 40 Suppl 3: S12-16.
- 13. Gu Y, Wang Y, Dai H, et al. Chondrogenic differentiation of canine myoblasts induced by cartilage-derived morphogenetic protein-2 and transforming growth factor-β1 in vitro. Mol Med Report, 2012, 5(3): 767-772.
- 14. Riera KM, Rothfusz NE, Wilusz RE, et al. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther, 2011, 13(6): R187.
- 15. Minehara H, Urabe K, Naruse K, et al. A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2. Cell Tissue Bank, 2011, 12(3): 199-207.
- 16. Fox DB, Warnock JJ, Stoker AM, et al. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci, 2010, 88(2): 326-332.
- 17. Johns DE, Athanasiou KA. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage. Cell Tissue Res, 2008, 333(3): 439-447.
- 18. Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res, 2009, 467(12): 3165-3174.
- 19. Morito T, Muneta T, Hara K, et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford), 2008, 47(8): 1137-1143.
- 20. Zhang S, Muneta T, Morito T, et al. Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system. J Orthop Res, 2008, 26(10): 1413-1418.
- 21. De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44(8): 1928-1942.
- 22. Djouad F, Bony C, Haupl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther, 2005, 7(6): 1304-1315.
- 23. Jo CH, Ahn HJ, Kim HJ, et al. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy, 2007, 9(7): 316-327.
- 24. Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues. Arthritis Rheum, 2005, 52(8): 2521-2529.
- 25. Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchynlal stem cells: optimal condition and cmnparison with bone morrow-derived cells. J Cell Biochem, 2006, 97(1): 84-97.
- 26. Cheng NC, Estes BT, Awad HA, et al. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A, 2009, 15(2): 231-241.
- 27. 李黎, 陈景祥, 朱崇涛. Sox9基因诱导脂肪肝细胞向软骨细胞分化. 现代生物医学进展, 2010, 10(20): 3851-3853.
- 28. 蔡增苗, 林昭静, 任富亮. 脂肪干细胞在软骨组织工程中的应用. 中国医药指南, 2011, 9(16): 217-218.
- 29. Mandal BB, Park SH, Gil ES, et al. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials, 2011, 32(2): 639-651.
- 30. Zellner J, Mueller M, Berner A, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A, 2010, 94(4): 1150-1161.
- 31. Ionescu LC, Lee GC, Huang KL, et al. Growth factor supplementation improves native and engineered meniscus repair in vitro. Acta Biomater, 2012, 8(10): 3687-3694.
- 32. Hegert C, Kramer J, Hargus G, et al. Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci, 2002, 115(Pt 23): 4617-4628.
- 33. Hwang NS, Varghese S, Zhang Z, et al. Chondrogenie differentiation of human embryonic stem cell-derived ceils in arginine-glycine-aspartate—modified hydrogels. Tissue Eng, 2006, 12(9): 2695-2706.
- 34. Nakajima M, Wakitani S, Harada Y, et al. In vivo mechanical condition plays an important role for appearance of cartilage tissue in ES cell transplanted joint. J Orthop Res, 2008, 26(1): 10-17.
- 35. Koay EJ, Hoben GM, Athanasiou KA. Tissue engineering with chondmgenically differentiated human embryonic stem cells. J Stem Cells, 2007, 25(9): 2183-2190.
- 36. Kramer J, Hegert C, Guan K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. J Mech Dev, 2000, 92(2): 193-205.
- 37. Steiuert AF, Palmer GD, Capito R, et al. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta1 complementary deoxyribonucleic acid. J Tissue Eng, 2007, 13(9): 2227-2237.
- 38. Steadman JR, Rodkey WG. Tissue-engeered collagen meniscus implants: 5- to 6- year feasibility study results. J Arthroscopy, 2005, 21(5): 515-525.
- 39. Martinek V, Ueblacker P, Braun K, et al. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg, 2005, 126(4): 228-234.
- 40. Walsh CJ, Goodman D, Caplan AI, et al. Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng, 1999, 5(4): 327-337.
- 41. Scotti C, Pozzi A, Mangiavini L, et al. Healing of meniscal tissue by cellular fibrin glue: an in vivo study. J Knee Surg Sports Traumatol Arthrosc, 2009, 17(6): 645-651.
- 42. Reckers LJ, Fagundes DJ, Cohen M. The ineffectiveness of fibrin glue and cyanoacrylate on fixation of meniscus transplants in rabbits. Knee, 2009, 16(4): 290-294.
- 43. Allman AJ, McPherson TB, Badylak SF, et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001, 71(11): 1631-1640.
- 44. Sarikaya A, Record R, Wu CC, et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng, 2002, 8(1): 63-71.
- 45. Grimes M, Pembroke JT, McGloughlin T. The effect of choice of sterilisation method on the biocompatibility and biodegradability of SIS (small intestinal submucosa). Biomed Mater Eng, 2005, 15(1-2): 65-71.
- 46. Roeder R, Wolfe J, Lianakis N, et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS) small-diameter vascular grafts. Boimed Mater Res, 1999, 47(1): 65-70.
- 47. Nihsen ES, Johnson CE, Hiles MC, et al. Bioactivity of small intestinal submucosa and oxidized regenerated cellulose/collagen. Adv Skin Wound Care, 2008, 21(10): 479-486.
- 48. Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3): 480-486.
- 49. Tan Y, Zhang Y, Pei M. Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa—a pilot study to engineer meniscus tissue constructs. Tissue Eng Part A, 2010, 16(1): 67-79.
- 50. Cook JL, Fox DB, Malaviya P, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med, 2006, 34(1): 32-42.
- 51. Tienen TG, Heijkants RG, de Groot JH, et al. Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med, 2006, 34(1): 64-71.
- 52. Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng, 2005, 11(7-8): 1095-1104.
- 53. Eli N, Oragui E, Khan W. Advances in meniscal tissue engineering. Ortop Traumatol Rehabil, 2011, 13(4): 319-326.
- 54. Stapleton TW, Ingram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242.
- 55. Mouzopoulos G, Siebold R. Partial meniscus substitution with tissue-engineered scaffold: an overview. Clin Sports Med, 2012, 31(1): 167-181.
- 56. Stabile KJ, Odom D, Smith TL, et al. An acellular, allograft-derived meniscus scaffold in an ovine model. Arthroscopy, 2010, 26(7): 936-948.
- 57. Sommerlath K, Gillquist J. The effect of meniscal prosthesis on knee biomechanics and cartilage. An experimental study in rabbits. Am J Sports Med, 1992, 20(1): 73-81.
- 58. Messner K, Gillquist J. Prosthetic replacement of the rabbit medial menisus. J Biomed Mater Res, 1993, 27(9): 1165-1173.
- 59. Testa Pezzin AP, Cardoso TP, do Carmo Alberto Rincon M, et al. Bioreabsorbable polymer scaffold as temporary meniscal prosthesis. Artif Organs, 2003, 27(5): 428-431.
- 60. Kobayashi M. A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed Mater Eng, 2004, 14(4): 505-515.
- 61. Gunja NJ, Huey DJ, James RA, et al. Effects of agarose mould compliance and surface roughness on self-assembled meniscus-shaped constructs. J Tissue Eng Regen Med, 2009, 3(7): 521-530.
- 62. Macbarb RF, Makris EA, Hu JC, et al. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater, 2013, 9(1): 4626-4634.
- 63. Bodin A, Concaro S, Brittberg M, et al. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med, 2007, 1(5): 406-408.
- 64. Lietman SA, Hobbs W, Inoue N, et al. Effects of selected growth factors on porcine meniscus in chemically defined medium. Orthopedics, 2003, 26(8): 799-803.
- 65. Imler SM, Doshi AN, Levenston ME. Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage, 2004, 12(9): 736-744.
- 66. Pangborn CA, Athanasiou KA. Growth factors and fibrochondrocytes in scaffolds. J Orthop Res, 2005, 23(5): 1184-1190.
- 67. Goessler UR, Bugert P, Bieback K, et al. In-vitro analysis of the expression of TGFbeta -superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett, 2005, 10(2): 345-362.
- 68. Lin PS, Chang MC, Chan CP, et al. Transforming growth factor β1 down-regulates Runx-2 and alkaline phosphatase activity of human dental pulp cells via ALK5/Smad2/3 signaling. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 111(3): 394-400.
- 69. Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum, 2005, 52(8): 2521-2529.
- 70. Shirasawa S, SekiyaI, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchynlal stem cells: optimal condition and cmnparison with bone morrow-derived cells. J Cell Biochem, 2006, 97(1): 84-97.
- 71. Horie M, Sekiya I, Muneta T, et al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells, 2009, 27(4): 878-887.
- 72. Rawadi G, Vayssière B, Dunn F, et al. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res, 2003, 18(10): 1842-1853.
- 73. Ming LG, Ge BF, Wang MG, et al. Comparison between 8-prenylnarigenin and narigenin concerning their activities on promotion of rat bone marrow stromal cells’ osteogenic differentiation in vitro. Cell Prolif, 2012, 45(6): 508-515.
- 74. Fukumoto T, Sperling JW, Sanyal A, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage, 2003, 11(1): 55-64.
- 75. Bhindi R, Brieger D, Ishii H, et al. Fibroblast growth factor 2 and the transcription factor Egr-1 localise to endothelial cell microvascular channels in human coronary artery occlusion. Thromb Haemost, 2005, 93(1): 172-174.