• Department of Wound Repair Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi Jiangsu, 214062, P.R.China;
XUE Mingyu, Email: mingyin031@163.com
Export PDF Favorites Scan Get Citation

Objective To investigate the effectiveness of modified induced membrane technique and pedicled skin (myocutaneous) flap for chronic tibial osteomyelitis in patients with diabetes. Methods  A clinical data of 22 diabetic patients with chronic tibial osteomyelitis between January 2017 and March 2019 was retrospectively analyzed. There were 15 males and 7 females with an average age of 52 years (range, 44-65 years). The course of diabetes was 3-12 years (mean, 6.1 years). The course of chronic osteomyelitis was 4 months to 7 years (mean, 3.3 years). The chronic osteomyelitis was rated as type Ⅲ in 9 cases and as type Ⅳ in 13 cases according to the Cierny-Mader classification criteria. Bacterial culture showed 21 cases of single bacterial infection and 1 case of mixed bacterial infection. Preoperative color Doppler ultrasound and CT angiography confirmed that the anterior and posterior tibial arteries were unobstructed. In the first stage of treatment, the bone and soft tissue defects were filled with antibiotic bone cement after the lesion was thoroughly debrided; the length of bone defect was 4-9 cm (mean, 5.6 cm), and the size of soft tissue defect was 5 cm×2 cm to 10 cm×7 cm. After 7-10 days, the bone cement was removed and a new antibiotic bone cement was filled into the bone defect. Meanwhile, the pedicled skin (myocutaneous) flap was performed to repair the wound. After 7-12 weeks, the inflammatory indexes returned to normal, autogenous iliac bone or combined with artificial bone was used to repair the bone defect in the second stage of treatment. The wound healing, bone defect healing, complications, and the number of successful treatments were recorded. The satisfaction of the skin flap efficacy and the function of the affected limb were evaluated. Results Local necrosis of the skin flap occurred in 3 cases after operation, leading to delayed healing of the wound; the other 19 flaps survived successfully, leading to primary healing of the wound. The skin grafts survived completely and the incisions healed by first intention. All cases were followed up 13-28 months with an average of 20 months. The infection recurred in 2 cases within 12 months after operation, and the bone defects healed after treated by modified induced membrane technique. The bone defect healing rate was 100%; the bone healing time was 6-10 months, with an average of 8.9 months; the infection control rate and successful treatment rate were 90.9% (20/22) and 90.9% (20/22), respectively. At 12 months after operation, according to the satisfaction evaluation standard of skin flap efficacy formulated by ZHANG Hao et al., all were satisfied. According to Johner-Wruhs adjacent joint function method, the limb function recovery was excellent in 13 cases, good in 7 cases, and fair in 2 cases, with an excellent and good rate of 90.9%. Conclusion For the treatment of chronic tibial osteomyelitis in patients with diabetes without vascular occlusion, the modified induced membrane technique and pedicled skin (myocutaneous) flap can repair bone and soft tissue defects, and control the infection at the same time, the short- and medium-term effectiveness are good.

Citation: BU Fanyu, XUE Mingyu, WANG Jin, GUO Xiaofeng. Modified induced membrane technique and pedicled skin (myocutaneous) flap for chronic tibial osteomyelitis in patients with diabetes. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35(6): 716-721. doi: 10.7507/1002-1892.202101013 Copy

Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved

  • Previous Article

    Indirect reduction technique via Nice knot for transverse fracture of patella
  • Next Article

    Comparison of the effectiveness of the posterior malleolus fixed or not on treatment of different Haraguchi’s classification of posterior malleolus fractures