1. |
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers, 2019, 5(1): 66. doi: 10.1038/s41572-019-0111-2.
|
2. |
Khouri KS, Khouri RK, Khouri RK. The third postmastectomy reconstruction option-autologous fat transfer. JAMA Surg, 2019, 154(1): 63-64.
|
3. |
Kling RE, Mehrara BJ, Pusic AL, et al. Trends in autologous fat grafting to the breast: a national survey of the american society of plastic surgeons. Plast Reconstr Surg, 2013, 132(1): 35-46.
|
4. |
Laloze J, Varin A, Gilhodes J, et al. Cell-assisted lipotransfer: Friend or foe in fat grafting? Systematic review and meta-analysis. J Tissue Eng Regen Med, 2018, 12(2): e1237-e1250.
|
5. |
Khouri RK, Schlenz I, Murphy BJ, et al. Nonsurgical breast enlargement using an external soft-tissue expansion system. Plast Reconstr Surg, 2000, 105(7): 2500-2512.
|
6. |
Khouri RK, Eisenmann-Klein M, Cardoso E, et al. Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. Plast Reconstr Surg, 2012, 129(5): 1173-1187.
|
7. |
Oranges CM, Striebel J, Tremp M, et al. The impact of recipient site external expansion in fat grafting surgical outcomes. Plast Reconstr Surg Glob Open, 2018, 6(2): e1649. doi: 10.1097/GOX.0000000000001649.
|
8. |
Denkler K. Vacuum breast expansion: a look back at the history of this technique. Plast Reconstr Surg, 2008, 122(3): 989-990.
|
9. |
Lasheen AE, Salim A, Hefny MR, et al. External tissue expansion successfully achieved using negative pressure. Surg Today, 2004, 34(2): 193-196.
|
10. |
Lasheen AE. External tissue expansion using negative pressure in upper-extremity reconstruction. J Hand Surg (Am), 2006, 31(10): 1694-1696.
|
11. |
Myung Y, Kwon H, Pak C, et al. Radiographic evaluation of vessel count and density with quantitative magnetic resonance imaging during external breast expansion in Asian women: A prospective clinical trial. J Plast Reconstr Aesthet Surg, 2016, 69(12): 1588-1597.
|
12. |
Oranges CM, Tremp M, Ling B, et al. A simple, reliable, and inexpensive intraoperative external expansion system for enhanced autologous structural fat grafting. Arch Plast Surg, 2016, 43(5): 466-469.
|
13. |
Khouri R, Del Vecchio D. Breast reconstruction and augmentation using pre-expansion and autologous fat transplantation. Clin Plast Surg, 2009, 36(2): 269-280.
|
14. |
Mestak O, Mestak J, Bohac M, et al. Breast reconstruction after a bilateral mastectomy using the BRAVA expansion system and fat grafting. Plast Reconstr Surg Glob Open, 2013, 1(8): e71. doi: 10.1097/GOX.0000000000000022.
|
15. |
Uda H, Sugawara Y, Sarukawa S, et al. Brava and autologous fat grafting for breast reconstruction after cancer surgery. Plast Reconstr Surg, 2014, 133(2): 203-213.
|
16. |
Khouri RK, Rigotti G, Khouri RK, et al. Tissue-engineered breast reconstruction with Brava-assisted fat grafting: a 7-year, 488-patient, multicenter experience. Plast Reconstr Surg, 2015, 135(3): 643-658.
|
17. |
Ho Quoc C, Piat JM, Carrabin N, et al. Breast reconstruction with fat grafting and BRAVA(®) pre-expansion: Efficacy evaluation in 45 cases. Ann Chir Plast Esthet, 2016, 61(3): 183-189.
|
18. |
蔡磊, 商婷, 宋延刚, 等. BRAVA结合自体脂肪移植在乳房中的应用. 兰州大学学报 (医学版), 2017, 43(6): 14-18.
|
19. |
付苏, 栾杰, 祁珺, 等. 组织外扩张辅助自体脂肪移植乳房再造术. 中华整形外科杂志, 2018, 34(2): 83-87.
|
20. |
Del Vecchio DA, Del Vecchio SJ. The graft-to-capacity ratio: volumetric planning in large-volume fat transplantation. Plast Reconstr Surg, 2014, 133(3): 561-569.
|
21. |
Khouri RK, Khouri RE, Lujan-Hernandez JR, et al. Diffusion and perfusion: the keys to fat grafting. Plast Reconstr Surg Glob Open, 2014, 2(9): e220. doi: 10.1097/GOX.0000000000000183.
|
22. |
Lancerotto L, Chin MS, Freniere B, et al. Mechanisms of action of external volume expansion devices. Plast Reconstr Surg, 2013, 132(3): 569-578.
|
23. |
Heit YI, Lancerotto L, Mesteri I, et al. External volume expansion increases subcutaneous thickness, cell proliferation, and vascular remodeling in a murine model. Plast Reconstr Surg, 2012, 130(3): 541-547.
|
24. |
Thomas GP, Hemmrich K, Abberton KM, et al. Zymosan-induced inflammation stimulates neo-adipogenesis. Int J Obes (Lond), 2008, 32(2): 239-248.
|
25. |
Chen X, He Y, Xu A, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep, 2019, 39(2): BSR20181776. doi: 10.1042/BSR20181776.
|
26. |
Qin Z, Cai J, Zhou T, et al. External volume expansion up-regulates CXCL12 expression and enhances mesenchymal stromal cell recruitment toward expanded prefabricated adipose tissue in rats. Plast Reconstr Surg, 2018, 141(4): 526e-537e.
|
27. |
Lujan-Hernandez J, Lancerotto L, Nabzdyk C, et al. Induction of Adipogenesis by External Volume Expansion. Plast Reconstr Surg, 2016, 137(1): 122-131.
|
28. |
Yuan Y, Yang S, Yi Y, et al. Construction of expanded prefabricated adipose tissue using an external volume expansion device. Plast Reconstr Surg, 2017, 139(5): 1129-1137.
|
29. |
Li Y, Wu M, Zhang Z, et al. Application of external force regulates the migration and differentiation of adipose-derived stem/progenitor cells by altering tissue stiffness. Tissue Eng Part A, 2019, 25(23-24): 1614-1622.
|
30. |
Zhang Z, Cai J, Li Y, et al. External volume expansion adjusted adipose stem cell by shifting the ratio of fibronectin to laminin. Tissue Eng Part A, 2020, 26(1-2): 66-77.
|
31. |
Kato H, Suga H, Eto H, et al. Reversible adipose tissue enlargement induced by external tissue suspension: possible contribution of basic fibroblast growth factor in the preservation of enlarged tissue. Tissue Eng Part A, 2010, 16(6): 2029-2040.
|
32. |
Kao HK, Hsu HH, Chuang WY, et al. External volume expansion modulates vascular growth and functional maturation in a swine model. Sci Rep, 2016, 6: 25865. doi: 10.1038/srep25865.
|
33. |
Paul NE, Denecke B, Kim BS, et al. The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells. J Tissue Eng Regen Med, 2018, 12(1): 276-284.
|
34. |
Howes BHL, Watson DI, Fosh B, et al. Efficacy of an external volume expansion device and autologous fat grafting for breast reconstruction following breast conserving surgery and total mastectomy: Small improvements in quality of life found in a prospective cohort study. J Plast Reconstr Aesthet Surg, 2020, 73(1): 27-35.
|
35. |
Chin MS, Ogawa R, Lancerotto L, et al. In vivo acceleration of skin growth using a servo-controlled stretching device. Tissue Eng Part C Methods, 2010, 16(3): 397-405.
|
36. |
Khouri RK, Rigotti G, Khouri RK, et al. Reply: Tissue-engineered breast reconstruction with brava-assisted fat grafting: A 7-year, 488-patient, multicenter experience. Plast Reconstr Surg, 2015, 136(4): 557e-558e.
|
37. |
Khouri RK, Khouri RK, Rigotti G, et al. Aesthetic applications of Brava-assisted megavolume fat grafting to the breasts: a 9-year, 476-patient, multicenter experience. Plast Reconstr Surg, 2014, 133(4): 796-807.
|
38. |
Hammer-Hansen N, Jensen TB, Damsgaard TE. Delayed total breast reconstruction with brava. Case Rep Surg, 2015, 2015: 601904. doi: 10.1155/2015/601904.
|
39. |
Schlenz I, Kaider A. The Brava external tissue expander: is breast enlargement without surgery a reality? Plast Reconstr Surg, 2007, 120(6): 1680-1689.
|
40. |
Del Vecchio DA, Bucky LP. Breast augmentation using preexpansion and autologous fat transplantation: a clinical radiographic study. Plast Reconstr Surg, 2011, 127(6): 2441-2450.
|
41. |
Ye Y, Liao Y, Lu F, et al. Daily suction provided by external volume expansion inducing regeneration of grafted fat in a murine model. Plast Reconstr Surg, 2017, 139(2): 392e-402e.
|
42. |
Wei S, Liu W, Gundogan B, et al. Delayed postconditioning with external volume expansion improves survival of adipose tissue grafts in a murine model. Plast Reconstr Surg, 2019, 143(1): 99e-110e.
|
43. |
Chin MS, Lujan-Hernandez J, Babchenko O, et al. External volume expansion in irradiated tissue: Effects on the recipient site. Plast Reconstr Surg, 2016, 137(5): 799e-807e.
|
44. |
Lujan-Hernandez J, Chin MS, Perry DJ, et al. Increasing fat graft retention in irradiated tissue after preconditioning with external volume expansion. Plast Reconstr Surg, 2020, 145(1): 103-112.
|
45. |
Eterno V, Zambelli A, Pavesi L, et al. Adipose-derived mesenchymal stem cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. Oncotarget, 2014, 5(3): 613-633.
|
46. |
Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One, 2012, 7(9): e45590. doi: 10.1371/journal.pone.0045590.
|
47. |
Groen JW, Negenborn VL, Twisk DJWR, et al. Autologous fat grafting in onco-plastic breast reconstruction: A systematic review on oncological and radiological safety, complications, volume retention and patient/surgeon satisfaction. J Plast Reconstr Aesthet Surg, 2016, 69(6): 742-764.
|
48. |
Kronowitz SJ, Mandujano CC, Liu J, et al. Lipofilling of the breast does not increase the risk of recurrence of breast cancer: A matched controlled study. Plast Reconstr Surg, 2016, 137(2): 385-393.
|
49. |
Krastev TK, Schop SJ, Hommes J, et al. Meta-analysis of the oncological safety of autologous fat transfer after breast cancer. Br J Surg, 2018, 105(9): 1082-1097.
|
50. |
Piccotti F, Rybinska I, Scoccia E, et al. Lipofilling in breast oncological surgery: A safe opportunity or risk for cancer recurrence? Int J Mol Sci, 2021, 22(7): 3737. doi: 10.3390/ijms22073737.
|
51. |
Casarrubios JM, Francés M, Fuertes V, et al. Oncological outcomes of lipofilling in breast reconstruction: a matched cohort study with 250 patients. Gland Surg, 2021, 10(3): 914-923.
|
52. |
Giatsidis G, Cheng L, Facchin F, et al. Moderate-intensity intermittent external volume expansion optimizes the soft-tissue response in a murine model. Plast Reconstr Surg, 2017, 139(4): 882-890.
|
53. |
Giatsidis G, Cheng L, Haddad A, et al. Noninvasive induction of angiogenesis in tissues by external suction: sequential optimization for use in reconstructive surgery. Angiogenesis, 2018, 21(1): 61-78.
|
54. |
Rhodius P, Haddad A, Matsumine H, et al. Noninvasive flap preconditioning by foam-mediated external suction improves the survival of fasciocutaneous axial-pattern flaps in a type 2 diabetic murine model. Plast Reconstr Surg, 2018, 142(6): 872e-883e.
|
55. |
Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Res Treat, 2016, 159(3): 395-406.
|