1. |
Hardy C, Osei L, Basset T, et al. Bone and joint infections with Staphylococcus aureus strains producing Panton-Valentine Leukocidin in French Guiana. Medicine (Baltimore), 2019, 98(27): e16015. doi: 10.1097/MD.0000000000016015.
|
2. |
Laurent E, Gras G, Druon J, et al. Key features of bone and joint infections following the implementation of reference centers in France. Med Mal Infect, 2018, 48(4): 256-262.
|
3. |
Tanaka-Azevedo AM, Torquato RJ, Tanaka AS, et al. Characterization of Bothrops jararaca coagulation inhibitor (BJI) and presence of similar protein in plasma of other animals. Toxicon, 2004, 44(3): 289-294.
|
4. |
Pham TT, Andrey DO, Stampf S, et al. Epidemiology and outcomes of bone and joint infections in solid organ transplant recipients. Am J Transplant, 2022, 22(12): 3031-3046.
|
5. |
Aboelnaga N, Elsayed SW, Abdelsalam NA, et al. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal, 2024, 22(1): 188. doi: 10.1186/s12964-024-01511-2.
|
6. |
Hu D, Li H, Wang B, et al. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano, 2017, 11(9): 9330-9339.
|
7. |
Jiao D, Yang S. Overcoming resistance to drugs targeting KRASG12C mutation. Innovation (Camb), 2020, 1(2): 100035. doi: 10.1016/j.xinn.2020.100035.
|
8. |
Abad L, Tafani V, Tasse J, et al. Evaluation of the ability of linezolid and tedizolid to eradicate intraosteoblastic and biofilm-embedded Staphylococcus aureus in the bone and joint infection setting. J Antimicrob Chemother, 2019, 74(3): 625-632.
|
9. |
Ferry T. A review of phage therapy for bone and joint infections. Methods Mol Biol, 2024, 2734: 207-235.
|
10. |
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev, 2024, 48(1): fuae002. doi: 10.1093/femsre/fuae002.
|
11. |
丁梦, 宋凌杰, 栾世方. 载药ZIF-8对医用高分子材料表面生物膜的清除性能分析. 分析化学, 2023, 51(11): 1835-1843.
|
12. |
Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183: 185-199.
|
13. |
Sisson TL, Jungbluth GL, Hopkins NK. Age and sex effects on the pharmacokinetics of linezolid. Eur J Clin Pharmacol, 2002, 57(11): 793-797.
|
14. |
Bankar SB, Singhal RS. Panorama of poly-ε-lysine. RSC Advances, 2013, 3(23): 8586-8603.
|
15. |
Lin J, Hu W, Gao T, et al. ε-poly-L-lysine as an efficient cartilage penetrating and residing drug carrier with high intraarticular injection safety for treating osteoarthritis. Chemical Engineering Journal, 2022, 430(3): 133018. doi: 10.1016/j.cej.2021.133018.
|
16. |
Yao Q, Huang ZW, Zhai YY, et al. Localized controlled release of bilirubin from β-cyclodextrin-conjugated ε-polylysine to attenuate oxidative stress and inflammation in transplanted islets. ACS Appl Mater Interfaces, 2020, 12(5): 5462-5475.
|
17. |
Natesan S, Sowrirajan C, Yousuf S, et al. Mode of encapsulation of linezolid by β-cyclodextrin and its role in bovine serum albumin binding. Carbohydr Polym, 2015, 115: 589-597.
|
18. |
Wu J, Shen P, Qin X, et al. Self-supply of H2O2 and O2 by a composite nanogenerator for chemodynamic therapy/hypoxia improvement and rapid therapy of biofilm-infected wounds. Chemical Engineering Journal, 2023. https://doi.org/10.1016/j.cej.2023.141507.
|
19. |
Lin J, Gao T, Wei H, et al. Optimal concentration of ethylenediaminetetraacetic acid as an irrigation solution additive to reduce infection rates in rat models of contaminated wound. Bone Joint Res, 2021, 10(1): 68-76.
|
20. |
Lin J, Suo J, Bao B, et al. Efficacy of EDTA-NS irrigation in eradicating Staphylococcus aureus biofilm-associated infection. Bone Joint Res, 2024, 13(1): 40-51.
|
21. |
Smith AW. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev, 2005, 57(10): 1539-1550.
|
22. |
Kolpen M, Lerche CJ, Kragh KN, et al. Hyperbaric oxygen sensitizes anoxic pseudomonas aeruginosa biofilm to ciprofloxacin. Antimicrob Agents Chemother, 2017, 61(11): e01024-e01017.
|
23. |
Xiu W, Wan L, Yang K, et al. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat Commun, 2022, 13(1): 3875. doi: 10.1038/s41467-022-31479-x.
|
24. |
Abad L, Josse J, Tasse J, et al. Antibiofilm and intraosteoblastic activities of rifamycins against Staphylococcus aureus: promising in vitro profile of rifabutin. J Antimicrob Chemother, 2020, 75(6): 1466-1473.
|
25. |
Dupieux C, Trouillet-Assant S, Camus C, et al. Intraosteoblastic activity of daptomycin in combination with oxacillin and ceftaroline against MSSA and MRSA. J Antimicrob Chemother, 2017, 72(12): 3353-3356.
|
26. |
Klein S, Nurjadi D, Eigenbrod T, et al. Evaluation of antibiotic resistance to orally administrable antibiotics in staphylococcal bone and joint infections in one of the largest university hospitals in Germany: is there a role for fusidic acid? Int J Antimicrob Agents, 2016, 47(2): 155-157.
|
27. |
Valour F, Trouillet-Assant S, Riffard N, et al. Antimicrobial activity against intraosteoblastic Staphylococcus aureus. Antimicrob Agents Chemother, 2015, 59(4): 2029-2036.
|
28. |
Modi SK, Gaur S, Sengupta M, et al. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Front Microbiol, 2023, 14: 1135579. doi: 10.3389/fmicb.2023.1135579.
|