- 1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, P. R. China;
- 2. The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, P. R. China;
Citation: CAO Qin, YE Qifa. Advances of three oxysterols in inflammation and immunology. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2019, 26(7): 876-881. doi: 10.7507/1007-9424.201901041 Copy
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res, 2016, 64: 152-169. |
2. | Cyster JG, Dang EV, Reboldi A, et al. 25-hydroxycholesterols in innate and adaptive immunity. Nat Rev Immunol, 2014, 14(11): 731-743. |
3. | Warner M, Gustafsson JA. On estrogen, cholesterol metabolism, and breast cancer. N Engl J Med, 2014, 370(6): 572-573. |
4. | Stiles AR, McDonald JG, Bauman DR, et al. CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J Biol Chem, 2009, 284(42): 28485-28489. |
5. | White JM, Whittaker GR. Fusion of enveloped viruses in endosomes. Traffic, 2016, 17(6): 593-614. |
6. | Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol, 2010, 11(10): 688-699. |
7. | Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. Trends Microbiol, 2011, 19(7): 368-375. |
8. | Rothwell C, Lebreton A, Young Ng C, et al. Cholesterol biosynthesis modulation regulates dengue viral replication. Virology, 2009, 389(1-2): 8-19. |
9. | Petersen J, Drake MJ, Bruce EA, et al. The major cellular sterol regulatory pathway is required for Andes virus infection. PLoS Pathog, 2014, 10(2): e1003911. |
10. | Blanc M, Hsieh WY, Robertson KA, et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol, 2011, 9(3): e1000598. |
11. | Civra A, Francese R, Gamba P, et al. 25-hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes. Redox Biol, 2018, 19: 318-330. |
12. | Cagno V, Civra A, Rossin D, et al. Inhibition of herpes simplex-1 virus replication by 25-hydroxycholesterol and 27-hydro-xycholesterol. Redox Biol, 2017, 12: 522-527. |
13. | Blanc M, Hsieh WY, Robertson KA, et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity, 2013, 38(1): 106-118. |
14. | Shibata N, Carlin AF, Spann NJ, et al. 25-hydroxycholesterol activates the integrated stress response to reprogram transcription and translation in macrophages. J Biol Chem, 2013, 288(50): 35812-35823. |
15. | Liu SY, Sanchez DJ, Aliyari R, et al. Systematic identification of type Ⅰ and type Ⅱ interferon-induced antiviral factors. Proc Natl Acad Sci U S A, 2012, 109(11): 4239-4244. |
16. | Mboko WP, Mounce BC, Emmer J, et al. Interferon regulatory factor 1 restricts gamma herpesvirus replication in primary immune cells. J Virol, 2014, 88(12): 6993-7004. |
17. | Anggakusuma, Romero-Brey I, Berger C, et al. Interferon-inducible cholesterol-25-hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation. Hepatology, 2015, 62(3): 702-714. |
18. | Li C, Deng YQ, Wang S, et al. 25-hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity, 2017, 46(3): 446-456. |
19. | Wang J, Zeng L, Zhang L, et al. Cholesterol 25-hydroxylase acts as a host restriction factor on pseudorabies virus replication. J Gen Virol, 2017, 98(6): 1467-1476. |
20. | Ke W, Fang L, Jing H, et al. Cholesterol 25-hydroxylase inhibits porcine reproductive and respiratory syndrome virus replication through enzyme activity-dependent and -independent mechanisms. J Virol, 2017, 91(19). pii: 827-817. |
21. | Doms A, Sanabria T, Hansen JN, et al. 25-hydroxycholesterol production by the cholesterol-25-hydroxylase interferon-stimulated gene restricts mammalian reovirus infection. J Virol, 2018, 92(18). pii: 1047-1018. |
22. | You H, Yuan H, Fu W, et al. Herpes simplex virus type 1 abrogates the antiviral activity of CH25H via its virion host shutoff protein. Antiviral Res, 2017, 143: 69-73. |
23. | Dong H, Zhou L, Ge X, et al. Porcine reproductive and respiratory syndrome virus nsp1β and nsp11 antagonize the antiviral activity of cholesterol-25-hydroxylase via lysosomal degradation. Vet Microbiol, 2018, 223: 134-143. |
24. | Shrivastava-Ranjan P, Bergeron É, Chakrabarti AK, et al. 25-Hydroxycholesterol inhibition of Lassa virus infection through aberrant GP1 glycosylation. MBio, 2016, 7(6). pii: 1808-1816. |
25. | Liu SY, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity, 2013, 38(1): 92-105. |
26. | Song Z, Zhang Q, Liu X, et al. Cholesterol 25-hydroxylase is an interferon-inducible factor that protects against porcine reproductive and respiratory syndrome virus infection. Vet Microbiol, 2017, 210: 153-161. |
27. | Arita M, Kojima H, Nagano T, et al. Oxysterol-binding protein family Ⅰ is the target of minor enviroxime-like compounds. J Virol, 2013, 87(8): 4252-4260. |
28. | Burke ML, McGarvey L, McSorley HJ, et al. Migrating Schistosoma japonicum schistosomula induce an innate immune response and wound healing in the murine lung. Mol Immunol, 2011, 49(1-2): 191-200. |
29. | Tuong ZK, Lau P, Yeo JC, et al. Disruption of Rorα1 and cholesterol 25-hydroxylase expression attenuates phagocytosis in male Rorαsg/sg mice. Endocrinology, 2013, 154(1): 140-149. |
30. | Reboldi A, Dang EV, McDonald JG, et al. Inflammation. 25-hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type Ⅰ interferon. Science, 2014, 345(6197): 679-684. |
31. | Vigne S, Chalmin F, Duc D, et al. IL-27-induced type 1 regulatory T-cells produce oxysterols that constrain IL-10 production. Front Immunol, 2017, 8: 1184. |
32. | Viaud M, Ivanov S, Vujic N, et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ Res, 2018, 122(10): 1369-1384. |
33. | Dang EV, McDonald JG, Russell DW, et al. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell, 2017, 171(5): 1057-1071. |
34. | Gold ES, Diercks AH, Podolsky I, et al. 25-hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci U S A, 2014, 111(29): 10666-10671. |
35. | Jang J, Park S, Jin Hur H, et al. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat Commun, 2016, 7: 13129. |
36. | Umetani M, Ghosh P, Ishikawa T, et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab, 2014, 20(1): 172-182. |
37. | Bieghs V, Hendrikx T, van Gorp PJ, et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology, 2013, 144(1): 167-178. |
38. | Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: Their involvement in neuroinflammation. Redox Biol, 2016, 10: 24-33. |
39. | Nelson ER, Wardell SE, Jasper JS, et al. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 2013, 342(6162): 1094-1098. |
40. | Umetani M, Domoto H, Gormley AK, et al. 27-hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med, 2007, 13(10): 1185-1192. |
41. | Umetani M, Shaul PW. 27-hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab, 2011, 22(4): 130-135. |
42. | Gargiulo S, Gamba P, Testa G, et al. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell, 2015, 14(4): 569-581. |
43. | Gargiulo S, Rossin D, Testa G, et al. Up-regulation of COX-2 and mPGES-1 by 27-hydroxycholesterol and 4-hydroxynonenal: A crucial role in atherosclerotic plaque instability. Free Radic Biol Med, 2018, 129: 354-363. |
44. | Hendrikx T, Jeurissen ML, Bieghs V, et al. Hematopoietic overexpression of Cyp27a1 reduces hepatic inflammation independently of 27-hydroxycholesterol levels in Ldlr-/- mice. J Hepatol, 2015, 62(2): 430-436. |
45. | Pereira JP, Kelly LM, Xu Y, et al. EBI2 mediates B cell segregation between the outer and centre follicle. Nature, 2009, 460(7259): 1122-1126. |
46. | Gatto D, Paus D, Basten A, et al. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity, 2009, 31(2): 259-269. |
47. | Liu C, Yang XV, Wu J, et al. Oxysterols direct B-cell migration through EBI2. Nature, 2011, 475(7357): 519-523. |
48. | Hannedouche S, Zhang J, Yi T, et al. Oxysterols direct immune cell migration via EBI2. Nature, 2011, 475(7357): 524-527. |
49. | Yi T, Wang X, Kelly LM, et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity, 2012, 37(3): 535-548. |
50. | Gatto D, Wood K, Caminschi I, et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat Immunol, 2013, 14(5): 446-453. |
51. | Yi T, Cyster JG. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. Elife, 2013, 2: e00757. |
52. | Li J, Lu E, Yi T, et al. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature, 2016, 533(7601): 110-114. |
53. | Chalmin F, Rochemont V, Lippens C, et al. Oxysterols regulate encephalitogenic CD4+ T cell trafficking during central nervous system autoimmunity. J Autoimmun, 2015, 56: 45-55. |
54. | Wanke F, Moos S, Croxford AL, et al. EBI2 is highly expressed in multiple sclerosis lesions and promotes early CNS migration of encephalitogenic CD4 T cells. Cell Rep, 2017, 18(5): 1270-1284. |
55. | Wanke F, Croxford AL, Heinena AP, et al. Expression of the G-protein coupled receptor EBI2 in T cells is highly regulated and confers pathogenicity to myelin specific Th17 cells. J Neuroimmunol, 2014, 275(1): 211. |
56. | Niss Arfelt K, Barington L, Benned-Jensen T, et al. EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies. Blood, 2017, 129(7): 866-878. |
57. | Shen ZJ, Hu J, Kashi VP, et al. Epstein-Barr virus-induced gene 2 mediates allergen-induced leukocyte migration into airways. Am J Respir Crit Care Med, 2017, 195(12): 1576-1585. |
58. | Rutkowska A, Sailer AW, Dev KK. EBI2 receptor regulates myelin development and inhibits LPC-induced demyelination. J Neuroinflammation, 2017, 14(1): 250. |
59. | Chu C, Moriyama S, Li Z, et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183. Cell Rep, 2018, 23(13): 3750-3758. |
60. | Emgård J, Kammoun H, García-Cassani B, et al. Oxysterol sensing through the receptor GPR183 promotes the lymphoid-tissue-inducing function of innate lymphoid cells and colonic inflammation. Immunity, 2018, 48(1): 120-132. |
61. | Jia J, Conlon TM, Sarker RS, et al. Cholesterol metabolism promotes B-cell positioning during immune pathogenesis of chronic obstructive pulmonary disease. EMBO Mol Med, 2018, 10(5). pii: e8349. |
62. | Rutkowska A, Shimshek DR, Sailer AW, et al. EBI2 regulates pro-inflammatory signalling and cytokine release in astrocytes. Neuropharmacology, 2018, 133: 121-128. |
- 1. Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res, 2016, 64: 152-169.
- 2. Cyster JG, Dang EV, Reboldi A, et al. 25-hydroxycholesterols in innate and adaptive immunity. Nat Rev Immunol, 2014, 14(11): 731-743.
- 3. Warner M, Gustafsson JA. On estrogen, cholesterol metabolism, and breast cancer. N Engl J Med, 2014, 370(6): 572-573.
- 4. Stiles AR, McDonald JG, Bauman DR, et al. CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J Biol Chem, 2009, 284(42): 28485-28489.
- 5. White JM, Whittaker GR. Fusion of enveloped viruses in endosomes. Traffic, 2016, 17(6): 593-614.
- 6. Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol, 2010, 11(10): 688-699.
- 7. Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. Trends Microbiol, 2011, 19(7): 368-375.
- 8. Rothwell C, Lebreton A, Young Ng C, et al. Cholesterol biosynthesis modulation regulates dengue viral replication. Virology, 2009, 389(1-2): 8-19.
- 9. Petersen J, Drake MJ, Bruce EA, et al. The major cellular sterol regulatory pathway is required for Andes virus infection. PLoS Pathog, 2014, 10(2): e1003911.
- 10. Blanc M, Hsieh WY, Robertson KA, et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol, 2011, 9(3): e1000598.
- 11. Civra A, Francese R, Gamba P, et al. 25-hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes. Redox Biol, 2018, 19: 318-330.
- 12. Cagno V, Civra A, Rossin D, et al. Inhibition of herpes simplex-1 virus replication by 25-hydroxycholesterol and 27-hydro-xycholesterol. Redox Biol, 2017, 12: 522-527.
- 13. Blanc M, Hsieh WY, Robertson KA, et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity, 2013, 38(1): 106-118.
- 14. Shibata N, Carlin AF, Spann NJ, et al. 25-hydroxycholesterol activates the integrated stress response to reprogram transcription and translation in macrophages. J Biol Chem, 2013, 288(50): 35812-35823.
- 15. Liu SY, Sanchez DJ, Aliyari R, et al. Systematic identification of type Ⅰ and type Ⅱ interferon-induced antiviral factors. Proc Natl Acad Sci U S A, 2012, 109(11): 4239-4244.
- 16. Mboko WP, Mounce BC, Emmer J, et al. Interferon regulatory factor 1 restricts gamma herpesvirus replication in primary immune cells. J Virol, 2014, 88(12): 6993-7004.
- 17. Anggakusuma, Romero-Brey I, Berger C, et al. Interferon-inducible cholesterol-25-hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation. Hepatology, 2015, 62(3): 702-714.
- 18. Li C, Deng YQ, Wang S, et al. 25-hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity, 2017, 46(3): 446-456.
- 19. Wang J, Zeng L, Zhang L, et al. Cholesterol 25-hydroxylase acts as a host restriction factor on pseudorabies virus replication. J Gen Virol, 2017, 98(6): 1467-1476.
- 20. Ke W, Fang L, Jing H, et al. Cholesterol 25-hydroxylase inhibits porcine reproductive and respiratory syndrome virus replication through enzyme activity-dependent and -independent mechanisms. J Virol, 2017, 91(19). pii: 827-817.
- 21. Doms A, Sanabria T, Hansen JN, et al. 25-hydroxycholesterol production by the cholesterol-25-hydroxylase interferon-stimulated gene restricts mammalian reovirus infection. J Virol, 2018, 92(18). pii: 1047-1018.
- 22. You H, Yuan H, Fu W, et al. Herpes simplex virus type 1 abrogates the antiviral activity of CH25H via its virion host shutoff protein. Antiviral Res, 2017, 143: 69-73.
- 23. Dong H, Zhou L, Ge X, et al. Porcine reproductive and respiratory syndrome virus nsp1β and nsp11 antagonize the antiviral activity of cholesterol-25-hydroxylase via lysosomal degradation. Vet Microbiol, 2018, 223: 134-143.
- 24. Shrivastava-Ranjan P, Bergeron É, Chakrabarti AK, et al. 25-Hydroxycholesterol inhibition of Lassa virus infection through aberrant GP1 glycosylation. MBio, 2016, 7(6). pii: 1808-1816.
- 25. Liu SY, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity, 2013, 38(1): 92-105.
- 26. Song Z, Zhang Q, Liu X, et al. Cholesterol 25-hydroxylase is an interferon-inducible factor that protects against porcine reproductive and respiratory syndrome virus infection. Vet Microbiol, 2017, 210: 153-161.
- 27. Arita M, Kojima H, Nagano T, et al. Oxysterol-binding protein family Ⅰ is the target of minor enviroxime-like compounds. J Virol, 2013, 87(8): 4252-4260.
- 28. Burke ML, McGarvey L, McSorley HJ, et al. Migrating Schistosoma japonicum schistosomula induce an innate immune response and wound healing in the murine lung. Mol Immunol, 2011, 49(1-2): 191-200.
- 29. Tuong ZK, Lau P, Yeo JC, et al. Disruption of Rorα1 and cholesterol 25-hydroxylase expression attenuates phagocytosis in male Rorαsg/sg mice. Endocrinology, 2013, 154(1): 140-149.
- 30. Reboldi A, Dang EV, McDonald JG, et al. Inflammation. 25-hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type Ⅰ interferon. Science, 2014, 345(6197): 679-684.
- 31. Vigne S, Chalmin F, Duc D, et al. IL-27-induced type 1 regulatory T-cells produce oxysterols that constrain IL-10 production. Front Immunol, 2017, 8: 1184.
- 32. Viaud M, Ivanov S, Vujic N, et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ Res, 2018, 122(10): 1369-1384.
- 33. Dang EV, McDonald JG, Russell DW, et al. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell, 2017, 171(5): 1057-1071.
- 34. Gold ES, Diercks AH, Podolsky I, et al. 25-hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci U S A, 2014, 111(29): 10666-10671.
- 35. Jang J, Park S, Jin Hur H, et al. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat Commun, 2016, 7: 13129.
- 36. Umetani M, Ghosh P, Ishikawa T, et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab, 2014, 20(1): 172-182.
- 37. Bieghs V, Hendrikx T, van Gorp PJ, et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology, 2013, 144(1): 167-178.
- 38. Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: Their involvement in neuroinflammation. Redox Biol, 2016, 10: 24-33.
- 39. Nelson ER, Wardell SE, Jasper JS, et al. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 2013, 342(6162): 1094-1098.
- 40. Umetani M, Domoto H, Gormley AK, et al. 27-hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med, 2007, 13(10): 1185-1192.
- 41. Umetani M, Shaul PW. 27-hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab, 2011, 22(4): 130-135.
- 42. Gargiulo S, Gamba P, Testa G, et al. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell, 2015, 14(4): 569-581.
- 43. Gargiulo S, Rossin D, Testa G, et al. Up-regulation of COX-2 and mPGES-1 by 27-hydroxycholesterol and 4-hydroxynonenal: A crucial role in atherosclerotic plaque instability. Free Radic Biol Med, 2018, 129: 354-363.
- 44. Hendrikx T, Jeurissen ML, Bieghs V, et al. Hematopoietic overexpression of Cyp27a1 reduces hepatic inflammation independently of 27-hydroxycholesterol levels in Ldlr-/- mice. J Hepatol, 2015, 62(2): 430-436.
- 45. Pereira JP, Kelly LM, Xu Y, et al. EBI2 mediates B cell segregation between the outer and centre follicle. Nature, 2009, 460(7259): 1122-1126.
- 46. Gatto D, Paus D, Basten A, et al. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity, 2009, 31(2): 259-269.
- 47. Liu C, Yang XV, Wu J, et al. Oxysterols direct B-cell migration through EBI2. Nature, 2011, 475(7357): 519-523.
- 48. Hannedouche S, Zhang J, Yi T, et al. Oxysterols direct immune cell migration via EBI2. Nature, 2011, 475(7357): 524-527.
- 49. Yi T, Wang X, Kelly LM, et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity, 2012, 37(3): 535-548.
- 50. Gatto D, Wood K, Caminschi I, et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat Immunol, 2013, 14(5): 446-453.
- 51. Yi T, Cyster JG. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. Elife, 2013, 2: e00757.
- 52. Li J, Lu E, Yi T, et al. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature, 2016, 533(7601): 110-114.
- 53. Chalmin F, Rochemont V, Lippens C, et al. Oxysterols regulate encephalitogenic CD4+ T cell trafficking during central nervous system autoimmunity. J Autoimmun, 2015, 56: 45-55.
- 54. Wanke F, Moos S, Croxford AL, et al. EBI2 is highly expressed in multiple sclerosis lesions and promotes early CNS migration of encephalitogenic CD4 T cells. Cell Rep, 2017, 18(5): 1270-1284.
- 55. Wanke F, Croxford AL, Heinena AP, et al. Expression of the G-protein coupled receptor EBI2 in T cells is highly regulated and confers pathogenicity to myelin specific Th17 cells. J Neuroimmunol, 2014, 275(1): 211.
- 56. Niss Arfelt K, Barington L, Benned-Jensen T, et al. EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies. Blood, 2017, 129(7): 866-878.
- 57. Shen ZJ, Hu J, Kashi VP, et al. Epstein-Barr virus-induced gene 2 mediates allergen-induced leukocyte migration into airways. Am J Respir Crit Care Med, 2017, 195(12): 1576-1585.
- 58. Rutkowska A, Sailer AW, Dev KK. EBI2 receptor regulates myelin development and inhibits LPC-induced demyelination. J Neuroinflammation, 2017, 14(1): 250.
- 59. Chu C, Moriyama S, Li Z, et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183. Cell Rep, 2018, 23(13): 3750-3758.
- 60. Emgård J, Kammoun H, García-Cassani B, et al. Oxysterol sensing through the receptor GPR183 promotes the lymphoid-tissue-inducing function of innate lymphoid cells and colonic inflammation. Immunity, 2018, 48(1): 120-132.
- 61. Jia J, Conlon TM, Sarker RS, et al. Cholesterol metabolism promotes B-cell positioning during immune pathogenesis of chronic obstructive pulmonary disease. EMBO Mol Med, 2018, 10(5). pii: e8349.
- 62. Rutkowska A, Shimshek DR, Sailer AW, et al. EBI2 regulates pro-inflammatory signalling and cytokine release in astrocytes. Neuropharmacology, 2018, 133: 121-128.