1. |
World Health Organization. Global tuberculosis report 2023. 2023.
|
2. |
Acharya B, Acharya A, Gautam S, et al. Advances in diagnosis of tuberculosis: an update into molecular diagnosis of mycobacterium tuberculosis. Mol Biol Rep, 2020, 47(5): 4065-4075.
|
3. |
Rangaka MX, Cavalcante SC, Marais BJ, et al. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet, 2015, 386(10010): 2344-2353.
|
4. |
Zhang Q, Zhang Q, Sun BQ, et al. GeneXpert MTB/RIF for rapid diagnosis and rifampin resistance detection of endobronchial tuberculosis. Respirology, 2018, 23(10): 950-955.
|
5. |
Charles Richard JL, Eichhorn PJA. Platforms for investigating LncRNA functions. SLAS Technol, 2018, 23(6): 493-506.
|
6. |
Fathizadeh H, Hayat SMG, Dao S, et al. Long non-coding RNA molecules in tuberculosis. Int J Biol Macromol, 2020, 156: 340-346.
|
7. |
Xia J, Liu Y, Ma Y, et al. Advances of long non-coding RNAs as potential biomarkers for tuberculosis: new hope for diagnosis. Pharmaceutics, 2023, 15(8): 2096.
|
8. |
Yan H, Liu G, Liang Y, et al. Up-regulated long noncoding RNA AC007128. 1 and its genetic polymorphisms associated with tuberculosis susceptibility. Ann Transl Med, 2021, 9(12): 1018.
|
9. |
李发科, 罗杰, 甘德露, 等. 长链非编码RNAMALAT1在鉴别结核感染中的价值. 免疫学杂志, 2019, 35(10): 885-890.
|
10. |
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536.
|
11. |
杨晓帆. 结核分枝杆菌感染巨噬细胞lncRNA和mRNA表达谱的初步研究. 广州: 南方医科大学, 2017.
|
12. |
罗清, 姚芳苡, 彭亦平, 等. 血清长链非编码RNA肺腺癌转移相关转录本1在肺结核中的诊断价值. 中华传染病杂志, 2017, 35(11): 684-687.
|
13. |
罗杰. 细胞因子及长链非编码RNA在结核菌不同感染状态中的诊断价值. 重庆: 陆军军医大学, 2018.
|
14. |
陈钟梁. 基于血浆lncRNAs芯片技术的肺结核病潜在生物学标志物的筛选与鉴定. 杭州: 浙江大学, 2017.
|
15. |
Wang L, Xie B, Zhang P, et al. LOC152742 as a biomarker in the diagnosis of pulmonary tuberculosis infection. J Cell Biochem, 2019, 120(6): 8949-8955.
|
16. |
陈敏, 余韵, 张燕, 等. 长链非编码RNA NEAT1、IL-6和TNF-α在结核感染中的表达水平及诊断价值研究. 国际检验医学杂志, 2020, 41(17): 2061-2065.
|
17. |
梁伊乐, 胡新俊, 岳峰, 等. 肺结核病人外周血长链非编码RNAMIR155宿主基因的表达研究. 安徽医药, 2021, 25(7): 1359-1362.
|
18. |
李君莉, 赵慧姝. 外周血LncRNAMIR155HG、miR-155检测在肺结核筛查中的临床价值. 临床检验杂志, 2021, 39(9): 675-678.
|
19. |
肖欢容, 王少锋, 蔡志钢. LncRNACASC7与miR-27b-3p在肺结核外周血单核细胞中的表达及意义. 临床肺科杂志, 2021, 26(4): 548-551,555.
|
20. |
钟婵丽. 外周血单个核细胞中lncRNANORAD和miR-433的差异表医学博士达对活动性肺结核的诊断价值. 湛江: 广东医科大学, 2022.
|
21. |
Sun W, He X, Zhang X, et al. Diagnostic value of lncRNA NORAD in pulmonary tuberculosis and its regulatory role in mycobacterium tuberculosis infection of macrophages. Microbiol Immunol, 2022, 66(9): 433-441.
|
22. |
Sun W, Zhang X, He X, et al. Long non-coding RNA SNHG16 silencing inhibits proliferation and inflammation in mycobacterium tuberculosis-infected macrophages by targeting miR-140-5p expression. Infect Genet Evol, 2022, 103: 105325.
|
23. |
Dong J, Song R, Shang X, et al. Identification of important modules and biomarkers in tuberculosis based on WGCNA. Front Microbiol, 2024, 15: 1354190.
|
24. |
Huang S, Kang X, Zeng Z, et al. Neutrophil lncRNA ZNF100-6: 2 is a potential diagnostic marker for active pulmonary tuberculosis. Eur J Med Res, 2024, 29(1): 162.
|
25. |
Roy S, Schmeier S, Kaczkowski B, et al. Transcriptional landscape of mycobacterium tuberculosis infection in macrophages. Sci Rep, 2018, 8(1): 6758.
|
26. |
Zhong X, Guo Q, Zhao J, et al. Diagnostic significance of long non-coding RNAs expression in tuberculosis patients: a systematic review and meta-analysis. Medicine (Baltimore), 2022, 101(7): e28879.
|
27. |
Glas AS, Lijmer JG, Prins MH, et al. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol, 2003, 56(11): 1129-1135.
|
28. |
Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol, 2022, 75(1): 25-36.
|
29. |
Rubinstein ML, Kraft CS, Parrott JS. Determining qualitative effect size ratings using a likelihood ratio scatter matrix in diagnostic test accuracy systematic reviews. Diagnosis (Berl), 2018, 5(4): 205-214.
|
30. |
Sun C, Xiao T, Xiao Y, et al. Silencing of long non-coding RNA NEAT1 inhibits hepatocellular carcinoma progression by downregulating SMO by sponging microRNA-503. Mol Med Rep, 2021, 23(3): 168.
|
31. |
Ming X, Duan W, Yi W. Long non-coding RNA NEAT1 predicts elevated chronic obstructive pulmonary disease (COPD) susceptibility and acute exacerbation risk, and correlates with higher disease severity, inflammation, and lower miR-193a in COPD patients. Int J Clin Exp Pathol, 2019, 12(8): 2837-2848.
|
32. |
Lee SY, Kwon J, Woo JH, et al. Bcl2l10 mediates the proliferation, invasion and migration of ovarian cancer cells. Int J Oncol, 2020, 56(2): 618-629.
|
33. |
Lee SY, Kwon J, Lee KA. Bcl2l10 induces metabolic alterations in ovarian cancer cells by regulating the TCA cycle enzymes SDHD and IDH1. Oncol Rep, 2021, 45(4): 47.
|
34. |
郑绪香, 施绍瑞, 汪顺伟, 等. 长链非编码RNA对肺结核的诊断效能Meta分析. 检验医学与临床, 2022, 19(23): 3189-3194.
|
35. |
Yi F, Hu J, Zhu X, et al. Transcriptional profiling of human peripheral blood mononuclear cells stimulated by mycobacterium tuberculosis PPE57 identifies characteristic genes associated with type i interferon signaling. Front Cell Infect Microbiol, 2021, 11: 716809.
|
36. |
Roy S, Schmeier S, Kaczkowski B, et al. Transcriptional landscape of mycobacterium tuberculosis infection in macrophages. Sci Rep, 2018, 8(1): 6758.
|
37. |
Li M, Cui J, Niu W, et al. Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun, 2019, 509(3): 803-809.
|
38. |
Ke Z, Lu J, Zhu J, et al. Down-regulation of lincRNA-EPS regulates apoptosis and autophagy in BCG-infected RAW264. 7 macrophages via JNK/MAPK signaling pathway. Infect Genet Evol, 2020, 77: 104077.
|
39. |
Jiang F, Lou J, Zheng XM, et al. LncRNA MIAT regulates autophagy and apoptosis of macrophage infected by mycobacterium tuberculosis through the miR-665/ULK1 signaling axis. Mol Immunol, 2021, 139: 42-49.
|