1. |
曾宪涛, 曹世义, 孙凤, 等. Meta分析系列之六: 间接比较及网状分析. 中国循证心血管医学杂志, 2012, 4(5): 399-402.
|
2. |
Song F, Harvey I, Lilford R. Adjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventions. J Clin Epidemiol, 2008, 61(5): 455-463.
|
3. |
井俊凯, 胡晓婷, 时嘉彤, 等. 3种改善血液循环药物联合基础治疗用于急性脑梗死的网状Meta分析及药物经济学评价. 药物评价研究, 2021, 44(3): 617-627.
|
4. |
Ades AE, Welton NJ, Dias S, et al. Twenty years of network meta-analysis: continuing controversies and recent developments. Res Synth Methods, 2024, 15(5): 702-727.
|
5. |
吴景玲, 葛龙, 张俊华, 等. 多个诊断性试验准确性的比较: 网状Meta分析方法介绍. 中国循证医学杂志, 2017, 17(8): 987-992.
|
6. |
Faron M, Cheugoua-Zanetsie M, Tierney J, et al. Individual participant data network meta-analysis of neoadjuvant chemotherapy or chemoradiotherapy in esophageal or gastroesophageal junction carcinoma. J Clin Oncol, 2023, 41(28): 4535-4547.
|
7. |
Couturier A, Calissi C, Cracowski JL, et al. Mouse models of diabetes-related ulcers: a systematic review and network meta-analysis. EBioMedicine, 2023, 98: 104856.
|
8. |
Jeon J, Park SH, Choi J, et al. Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: a systematic review and network meta-analysis. Acta Biomater, 2024, 183: 50-60.
|
9. |
张方圆, 沈傲梅, 曾宪涛, 等. 系统评价方法学质量评价工具AMSTAR2解读. 中国循证心血管医学杂志, 2018, 10(1): 14-18.
|
10. |
王瑞平. 临床研究中混杂偏倚的识别和控制策略. 上海医药, 2022, 43(15): 30-34.
|
11. |
Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ, 2011, 343: d5928.
|
12. |
Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ, 2019, 366: l4898.
|
13. |
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536.
|
14. |
Schünemann HJ, Cuello C, Akl EA, et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol, 2019, 111: 105-114.
|
15. |
黄悦勤. 医学科研中随机误差控制和样本量确定. 中国心理卫生杂志, 2015, 29(11): 874-880.
|
16. |
李柄辉, 訾豪, 李路遥, 等. 医学领域一次研究和二次研究的方法学质量(偏倚风险)评价工具. 医学新知, 2021, 31(1): 51-58.
|
17. |
沈洪兵, 齐秀英. 流行病学(第9版). 北京: 人民卫生出版社, 2018.
|
18. |
Detsky AS, Naylor CD, O'Rourke K, et al. Incorporating variations in the quality of individual randomized trials into meta-analysis. J Clin Epidemiol, 1992, 45(3): 255-265.
|
19. |
Liu W, Duan Y, Cui W, et al. Skin antiseptics in venous puncture site disinfection for preventing blood culture contamination: a Bayesian network meta-analysis of randomized controlled trials. Int J Nurs Stud, 2016, 59: 156-162.
|
20. |
Critical Appraisal Skill Programme. CASP checklist: CASP randomised controlled trial checklist. 2023.
|
21. |
Chou PL, Huang YP, Cheng MH, et al. Improvement of paclitaxel-associated adverse reactions (ADRs) via the use of nano-based drug delivery systems: a systematic review and network meta-analysis. Int J Nanomedicine, 2020, 15: 1731-1743.
|
22. |
Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary. Control Clin Trials, 1996, 17(1): 1-12.
|
23. |
Wong AYW, Hooi NMF, Yeo BSY, et al. Improving diabetic wound-healing outcomes with topical growth factor therapies. J Clin Endocrinol Metab, 2024, 109(8): e1642-e1651.
|
24. |
Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical therapy, 2003, 83(8): 713-721.
|
25. |
Binesh M, Ehsani F, Motaharinezhad F, et al. The effect of whole-body vibration on glucose and lipid profiles in type-2 diabetes: a systematic review and pairwise and network meta-analyses of randomized trials. Sci Rep, 2024, 14(1): 12494.
|
26. |
Chen Z, Tian F. Evaluation of oral small molecule drugs for the treatment of COVID-19 patients: a systematic review and network meta-analysis. Ann Med, 2023, 55(2): 2274511.
|
27. |
National Heart, Lung, and Blood Institute. Study quality assessment tools. 2023.
|
28. |
Shaffer A, Naik A, Bederson M, et al. Efficacy of deep brain stimulation for the treatment of anorexia nervosa: a systematic review and network meta-analysis of patient-level data. Neurosurg Focus, 2023, 54(2): E5.
|
29. |
Carron M, Tamburini E, Linassi F, et al. Efficacy of nonopioid analgesics and adjuvants in multimodal analgesia for reducing postoperative opioid consumption and complications in obesity: a systematic review and network meta-analysis. Br J Anaesth, 2024, 133(6): 1234-1249.
|
30. |
Barker TH, Stone JC, Sears K, et al. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid Synth, 2023, 21(3): 494-506.
|
31. |
Rossi MT, de Oliveira MN, Vidigal MTC, et al. Effectiveness of anesthetic solutions for pain control in lower third molar extraction surgeries: a systematic review of randomized clinical trials with network meta-analysis. Clin Oral Investig, 2021, 25(1): 1-22.
|
32. |
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health, 1998, 52(6): 377-384.
|
33. |
McNulty KL, Elliott-Sale KJ, Dolan E, et al. The effects of menstrual cycle phase on exercise performance in Eumenorrheic women: a systematic review and meta-analysis. Sports Med, 2020, 50(10): 1813-1827.
|
34. |
Slim K, Nini E, Forestier D, et al. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg, 2003, 73(9): 712-716.
|
35. |
Ji Z, Hu H, Qiang X, et al. Traditional Chinese medicine for COVID-19: a network meta-analysis and systematic review. Am J Chin Med, 2022, 50(4): 883-925.
|
36. |
Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 2016, 355: i4919.
|
37. |
Billeter AT, Reiners B, Seide SE, et al. Comparative effectiveness of medical treatment vs. metabolic surgery for histologically proven non-alcoholic steatohepatitis and fibrosis: a matched network meta-analysis. Hepatobiliary Surg Nutr, 2022, 11(5): 696-708.
|
38. |
Barker TH, Habibi N, Aromataris E, et al. The revised JBI critical appraisal tool for the assessment of risk of bias for quasi-experimental studies. JBI Evid Synth, 2024, 22(3): 378-388.
|
39. |
Huang J, Forde R, Parsons J, et al. Interventions to increase the uptake of postpartum diabetes screening among women with previous gestational diabetes: a systematic review and Bayesian network meta-analysis. Am J Obstet Gynecol MFM, 2023, 5(10): 101137.
|
40. |
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol, 2010, 25(9): 603-605.
|
41. |
Low CJW, Ling RR, Lau MPXL, et al. Mechanical circulatory support for cardiogenic shock: a network meta-analysis of randomized controlled trials and propensity score-matched studies. Intensive Care Med, 2024, 50(2): 209-221.
|
42. |
Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing bias in studies of prognostic factors. Ann Intern Med, 2013, 158(4): 280-286.
|
43. |
Vámos O, Komora P, Gede N, et al. The effect of nicotine-containing products on peri-implant tissues: a systematic review and network meta-analysis. Nicotine Tob Res, 2024, 26(10): 1276-1285.
|
44. |
Pesce P, Menini M, Ugo G, et al. Evaluation of periodontal indices among non-smokers, tobacco, and e-cigarette smokers: a systematic review and network meta-analysis. Clin Oral Investig, 2022, 26(7): 4701-4714.
|
45. |
Moola SMZ, Tufanaru C, Aromataris E, et al. Chapter 7: systematic reviews of etiology and risk . In: Aromataris E, Munn Z (Editors). JBI manual for evidence synthesis. JBI, 2020.
|
46. |
Okeahialam NA, Taithongchai A, Thakar R, et al. The incidence of anal incontinence following obstetric anal sphincter injury graded using the Sultan classification: a network meta-analysis. Am J Obstet Gynecol, 2023, 228(6): 675-688.
|
47. |
Higgins JPT, Morgan RL, Rooney AA, et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). Environ Int, 2024, 186: 108602.
|
48. |
Wallerer S, Papakonstantinou T, Morze J, et al. Association between substituting macronutrients and all-cause mortality: a network meta-analysis of prospective observational studies. EClinicalMedicine, 2024, 75: 102807.
|
49. |
魏来武, 陈削静, 曹钰彬, 等. 暴露类非随机研究偏倚风险评价工具(ROBINS-E2022版)解读. 中国循证医学杂志, 2023, 23(11): 1340-1350.
|
50. |
Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol, 2003, 3: 25.
|
51. |
Zhou T, Zhang HP, Chen WW, et al. Cuff-leak test for predicting postextubation airway complications: a systematic review. J Evid Based Med, 2011, 4(4): 242-254.
|
52. |
Alberts IL, Seide SE, Mingels C, et al. Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: a systematic review and network meta-analysis. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2978-2989.
|
53. |
Yang B, Mallett S, Takwoingi Y, et al. QUADAS-C: a tool for assessing risk of bias in comparative diagnostic accuracy studies. Ann Intern Med, 2021, 174(11): 1592-1599.
|
54. |
Balasubramanian P, Abia-Trujillo D, Barrios-Ruiz A, et al. Diagnostic yield and safety of diagnostic techniques for pulmonary lesions: systematic review, meta-analysis and network meta-analysis. Eur Respir Rev, 2024, 33(173): 240046.
|
55. |
Xu J, Pan L, Wu D, et al. Comparison of the diagnostic value of various microRNAs in blood for colorectal cancer: a systematic review and network meta-analysis. BMC Cancer, 2024, 24(1): 770.
|
56. |
Moher D, Schulz KF, Simera I, et al. Guidance for developers of health research reporting guidelines. PLoS Med, 2010, 7(2): e1000217.
|
57. |
黄玉香, 沈建通, 刘雨今. 诊断试验准确性比较研究偏倚风险评价工具QUADAS-C解读. 中国循证医学杂志, 2022, 22(9): 1108-1116.
|
58. |
Sounderajah V, Ashrafian H, Rose S, et al. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med, 2021, 27(10): 1663-1665.
|
59. |
Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol, 2014, 14: 43.
|
60. |
Khan ZA, Sumsuzzman DM, Choi J, et al. Neurodegenerative effect of DAPK1 after cerebral hypoxia-ischemia is associated with its post-transcriptional and signal transduction regulations: a systematic review and meta-analysis. Ageing Res Rev, 2022, 76: 101593.
|
61. |
von Elm E, Moher D, Little J, et al. Reporting genetic association studies: the STREGA statement. Lancet, 2009, 374(9684): 98-100.
|
62. |
Ye ZM, Li LJ, Zheng JH, et al. A comprehensive assessment of single nucleotide polymorphisms associated with pancreatic cancer risk: a protocol for systematic review and network meta-analysis. Medicine (Baltimore), 2020, 99(24): e20345.
|
63. |
Sauerbrei W, Taube SE, McShane LM, et al. Reporting recommendations for tumor marker prognostic studies (REMARK): an abridged explanation and elaboration. J Natl Cancer Inst, 2018, 110(8): 803-811.
|
64. |
Bernardo C, Monteiro FL, Direito I, et al. Association between estrogen receptors and GATA3 in bladder cancer: a systematic review and meta-analysis of their clinicopathological significance. Front Endocrinol (Lausanne), 2021, 12: 684140.
|
65. |
Delgado AH, Sauro S, Lima AF, et al. RoBDEMAT: a risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviews. J Dent, 2022, 127: 104350.
|
66. |
Lima LC, Landmayer K, Braga MM, et al. Effect of laser irradiation associated with fluoride in decreasing erosive tooth wear: a systematic review with a network meta-analysis. J Evid Based Dent Pract, 2024, 24(3): 101990.
|
67. |
Chiocchia V, Nikolakopoulou A, Higgins JPT, et al. ROB-MEN: a tool to assess risk of bias due to missing evidence in network meta-analysis. BMC Med, 2021, 19(1): 304.
|
68. |
Birkinshaw H, Friedrich CM, Cole P, et al. Antidepressants for pain management in adults with chronic pain: a network meta-analysis. Cochrane Database Syst Rev, 2023, (5): CD014682.
|
69. |
Lunny C, Veroniki AA, Higgins JPT, et al. Methodological review of NMA bias concepts provides groundwork for the development of a list of concepts for potential inclusion in a new risk of bias tool for network meta-analysis (RoB NMA Tool). Syst Rev, 2024, 13(1): 25.
|
70. |
Lai H, Ge L, Sun M, et al. Assessing the risk of bias in randomized clinical trials with large language models. JAMA Netw Open, 2024, 7(5): e2412687.
|