Objective To verify the effects of the treatment of krypton yellow laser for diabetic macular edema.Methods A total of 430 eyes in 251 cases of diabetic focal macular edema, diffuse edema and cystoid edema were treated with krypton yellow laser photocoagulation. Those with focal macular edema underwent the focal photocoagulation, and those with diffuse edema and cystoid edema underwent the grid photocoagulation.The visual acuity examination, fundus fluoresec in angiography and colour photography of the fundus were performed before and every 3 or 4 months after the treatment.The changes of macular edema after the treatment were analysed.The follow-up duration was 3 to 23 months (with an average of 15.5 months). Results After laser focal photocoagulation in 186 eyes with focal macular edema, visual acuity was improved or maintained in 183 eyes (98.39% ). Edema disappeared completely or partially in 184 eyes (98.93%). After laser grid photocoagulation in 175 eyes with diffuse macular edema, visual acuity was improved or maintained in 163 eyes (93.14%). Edema disappeared completely or partially in 164 eyes (93.71%). After laser grid photocoagulation in 69 eyes with cystoid macular edema, visual acuity was improved or maintained in 59 eyes (85.5% ). Edema disappeared completely or partially in 64 eyes (92.75%).Conclusion The linchpin of the treatment of krypton yellow laser for diabetic macular edema lies in the insurance of the effective laser macules and the adaptability of selecting the proper parameter of laser according to the degree and scope of the macular edema and the visual acuity. (Chin J Ocul Fundus Dis,2003,19:14-17)
Objective To investigate the therapeutic effect of different wavelength krypton lasers on diabetic retinopathy. Methods A total of 55 eyes (35 cases) with diabetic retinopathy underwent different wavelength k rypton lasers photocoagulation treatment, according to the different manifestati on of the affected eyes. The visual acuity, intraocular pressure,visual field,visual evoked potential were examined, and slit-lamp, ophthalmoscopy, Bultraso nography, and fundus fluorescein angiography were performed preoperatively. The patients were followed up for at least 12 months after krypton laser treatment. Results The resulting effect on visual acuity after 12 months of photocoagulation in this series revealed that, 20 eyes (36.4%) i mproved, 34 eyes (61.8%) remained no change, and one eye (1.8%) decreased. Conclusions Different wavelength krypton lasers photoco agulation can be used in treatment of diabetic retinopathy and can improve the visual acuity at certain extent. (Chin J Ocul Fundus Dis, 2001,17:178-180)
ObjectiveTo observe clinical outcomes of laser photocoagulation on retinopathy of prematurity (ROP). MethodsClinical data of 64 cases of ROP infants (127 eyes) were studied retrospectively. Fifteen infants (30 eyes) were diagnosed of pre-threshold ROP (type Ⅰ, 23.6%) and 49 cases (97 eyes) of threshold ROP (76.4%). All the eyes underwent photocoagulation through binocular indirect ophthalmoscope (532 nm or 810 nm) within 72 hours after the confirmation ROP. In all the 15 cases (30 eyes) of pre-threshold ROP (type Ⅰ), 6 of them (12 eyes) were photocoagulated by laser of 532 nm, and the other 9 ones (18 eyes) were treated with 810 nm. In 49 threshold ROP infants (97 eyes), 37 cases (73 eyes) and 12 ones (24 eyes) were treated with laser of 532 nm or 810 nm respectively. All the infants were followed up 12-36 months (18.4 months) since photocoagulation to investigate regression of ROP. All the data of ROP infants photocoagulated, such as recovery rate of one-time photocoagulation, repeat rate, unfavorable outcomes, and complications, were analyzed statistically according to the severity of ROP and wave length of laser employed. ResultsIn all the 127 photocoagulation treated eyes, ROP regressed completely in 125 eyes (98.4%), temporal retinal traction remained in 2 eyes (1.6%), and no retinal detachment was found. ROP regressed completely in 118 eyes (92.9%) after one-time photocoagulation, recovered totally in 6 eyes (4.7%) after repeating photocoagulation 2-3 times, and resorted to cryotherapy in 3 eyes (2.4%). Subconjunctiva hemorrhage, found in 12 eyes (9.4%), was the most common complication. During photocoagulation, anesthetic accident occurred in 1 infant (1.6%), and 1 eye developed cataract (0.8%). It was suggested from statistical analysis that there was no significant difference on efficiency or safety between pre-threshold (type Ⅰ) and threshold ROP photocoagulated by laser of 532 nm or 810 nm. However, almost all of the ROP infants need repeat photocoagulation or additional cryotherapy, and patients with unfavorable outcomes or severe complications, occurred in threshold ROP treated with 532 nm laser. ConclusionPhotocoagulation with 532 nm or 810 nm laser is effective for type Ⅰ pre-threshold or threshold ROP.
ObjectiveTo observe the efficacy and safety of combination of intravitreal injection of ranibizumab and laser photocoagulation for the treatment of aggressive posterior retinopathy of prematurity (AP-ROP). MethodsMedical records of 70 eyes of 35 premature infants with a primary diagnosis of AP-ROP in our clinic were reviewed and analyzed retrospectively. All the lesions were located in posterior zone, with 42 eyes in zone 1 and 28 eyes in zone 2. Forty-six eyes had iris neovascularization, while 19 eyes combined with vitreous hemorrhage. All participants underwent intravitreal injection of ranibizumab as the primary treatment within 12 hours after diagnosis of AP-ROP. The systemic and ocular adverse effects were observed. The change of retinal vascular tortuosity and dilatation before and after the intravitreal injection of ranibizumab was observed one week after injection. Laser photocoagulation was used as adjuvant therapy if the plus disease persisted more than two weeks or new-onset ridge occurred after injection. The mean time interval between injection and laser therapy was (5.1±2.6) weeks (range, 1-10 weeks). Follow-up ranged from 6 to 18 months, with a mean of (10.3±3.9) months. The anatomical results and complications were evaluated after treatment. The eyes that progressed to stage 4 or 5 during the follow-ups were underwent lens-sparing vitrectomy or lensectomy combined with vitrectomy. ResultsNo major systemic or ocular complications were observed. Preretinal hemorrhages were found in 12 eyes of 8 patients (17.1%), but they were absorbed spontaneously during the follow-ups. All lens remained transparent and no iatrogenic retinal hole was occurred during the follow-ups. After the injection, the regression of iris neovascularization was observed in 46 eyes within one week, vitreous hemorrhage absorbed significantly in 16 eyes (84.2%), and plus disease disappeared completely within one week in 61 eyes (87.1%). 59 eyes (84.3%) demonstrated vascularization toward the peripheral retina after treatment. 32 out of 42 eyes (76.2%) with zone 1 demonstrated vascularization toward to zone 2, while 24 out of 28 eyes (85.7%) with zone 2 demonstrated vascularization toward to the junction of zone 2 and 3. After intravitreal injection of ranibizumab combined with laser photocoagulation, 62 of 70 eyes (88.6%) had retinal vascular ridge and plus disease regression. However, 8 eyes of 6 patients (11.4%) showed significant fibrovascular proliferation and progressed to retinal detachment after the combination treatment of intravitreal ranibizumab injection and laser photocoagulation. Four eyes underwent lens-sparing vitrectomy, while the other 4 eyes underwent vitrectomy combined with lensectomy. Five eyes achieved totally retinal reattachment after surgery, while 3 eyes achieved partially retinal reattachment. ConclusionThe combination of intravitreal injection of ranibizumab and laser photocoagulation is safe and effective in the treatment of AP-ROP.