Cardiotocography (CTG) is a non-invasive and important tool for diagnosing fetal distress during pregnancy. To meet the needs of intelligent fetal heart monitoring based on deep learning, this paper proposes a TWD-MOAL deep active learning algorithm based on the three-way decision (TWD) theory and multi-objective optimization Active Learning (MOAL). During the training process of a convolutional neural network (CNN) classification model, the algorithm incorporates the TWD theory to select high-confidence samples as pseudo-labeled samples in a fine-grained batch processing mode, meanwhile low-confidence samples annotated by obstetrics experts were also considered. The TWD-MOAL algorithm proposed in this paper was validated on a dataset of 16 355 prenatal CTG records collected by our group. Experimental results showed that the algorithm proposed in this paper achieved an accuracy of 80.63% using only 40% of the labeled samples, and in terms of various indicators, it performed better than the existing active learning algorithms under other frameworks. The study has shown that the intelligent fetal heart monitoring model based on TWD-MOAL proposed in this paper is reasonable and feasible. The algorithm significantly reduces the time and cost of labeling by obstetric experts and effectively solves the problem of data imbalance in CTG signal data in clinic, which is of great significance for assisting obstetrician in interpretations CTG signals and realizing intelligence fetal monitoring.
The therapeutic effects of transcranial magnetic stimulation (TMS) are closely related to the structure of the stimulation coil. Based on this, this study designed an A-word coil and proposed a multi-strategy fusion multi-objective slime mould algorithm (MSSMA) aimed at optimizing the stimulation depth, focality, and intensity of the coil. MSSMA significantly improved the convergence and distribution of the algorithm by integrating a dual-elite guiding mechanism, a hyperbolic tangent control strategy, and a hybrid polynomial mutation strategy. Furthermore, compared with other stimulation coils, the novel coil optimized by the MSSMA demonstrates superior performance in terms of stimulation depth. To verify the optimization effects, a magnetic field measurement system was established, and a comparison of the measurement data with simulation data confirmed that the proposed algorithm could effectively optimize coil performance. In summary, this study provides a new approach for deep TMS, and the proposed algorithm holds significant reference value for multi-objective engineering optimization problems.