The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST κ-ω with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089.
This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.
Quantitative measurement of strain distribution of arterial vessel walls due to pulsatile blood flow within the vascular lumen is valuable for evaluating the elasticity of arterial wall and predicting the evolution of plaques. The present paper shows that the three-dimensional (3D) strain distribution are estimated through uni-directional coupling for 3D vessel and blood models reconstructed from intravascular ultrasound (IVUS) images with the computational fluid dynamics (CFD) numerical simulation technique. The morphology of vessel wall and plaques as well as strain distribution can be visually displayed with pseudo-color coding.
Computational fluid dynamics was used to investigate the effect of the pathogenesis of membranous obstruction of inferior vena cava of Budd-Chiari syndrome with various angles between right hepatic vein and inferior vena cava. Mimics software was used to reconstruct the models from magnetic resonance imaging (MRI) angiograms of inferior vena cava, right hepatic vein, middle hepatic vein and left hepatic vein, and 3DMAX was used to construct the models of 30°, 60°, 90° and 120° angles between right hepatic vein and inferior vena cava, which was based on the reconstructed models.The model was conducted with clinical parameters in terms of wall shear stress distribution, static pressure distribution and blood velocity. The results demonstrated that the differences between wall shear stress and static pressure had statistical significance with various angles between right hepatic vein and inferior vena cava by SPSS. The pathogenesis of membranous obstruction of inferior vena cava had a correlation with the angles between right hepatic vein and inferior vena cava.
Congenital tracheal stenosis (CTS) is a rare but potentially life-threatening disease which results in congnital airway lesion. CTS is often associated with cardiovascular anomalies and presented with a wide spectrum of symptoms. CTS has challenged pediatric surgeons for decades. Various classic approaches and new techniques, including computational fluid dynamics, tissue-engineering trachea, and 3D printing have been proposed for diagnosis and treatment of CTS. This review provides a snapshot of the main progress of diagnosis and treatment of CTS.
Objective To optimize the hemodynamics of a disk blood pump in children. Method We used the computational fluid dynamics technology to simulate the flow in a pediatric blood pump numerically, and finally analyzed the results for deep study about the thrombosis and hemolysis produced in it, to improve the design according to the results of the flow field analysis. Results We calculated results between the flow rate and the pressure elevation at different rotational speed: 2 500 rpm, 3 000 rpm, and 4 000 rpm, respectively. Under each rotational speed, it was selected five different discharge outlet boundary conditions. The simulation results conformed to the experimental data. The increased pressure of the blood pump was effective. But the phenomenon of flow separation was increased the at blade surface in the low speed region. The maximum wall shear stress was maintained within 100 Pa. Conclusion The design of disc blood pump has a good fluid dynamic performance. And the flow line is fluent, the probability of thrombosis and hemolysis occurred is in the range of control. But the phenomenon of flow separation is appeared. There is a room to improve.
In order to investigate the application of lattice Boltzmann method (LBM) in the numerical simulation of computed tomography angiography-derived fractional flow reserve (FFRCT), an idealized narrowed tube model and two coronary stenosis arterymodels are studied. Based on the open source code library (Palabos), the relative algorithm program in the development environment (Codeblocks) was improved. Through comparing and analyzing the results of FFRCT which is simulated by LBM and finite element analysis software ANSYS, and the feasibility of the numerical simulation of FFRCT by LBM was verified . The results show that the relative error between the results of LBM and finite element analysis software ANSYS is about 1%, which vertifies the feasibility of simulating the coronary FFRCT by LBM. The simulation of this study provides technical support for developing future FFRCT application software, and lays the foundation for the calculation of clinical FFRCT.
ObjectiveTo investigate the effects of a self-powered conduit in different patients’ models who underwent extracardiac Fontan procedure.MethodsFour children who underwent extracardiac Fontan procedure in Shanghai Children's Medical Center from 2011 to 2017 year were selected. Venae cavae and pulmonary arteries were reconstructed using Mimics 19.0®. In silico, a venturi conduit was introduced to the anastomosis of venae cavae and pulmonary artery. Then computational fluid dynamics simulation was performed using patients’ clinical data.ResultsWhen inferior venae cavae were directly to or to the left of superior venae cavae, the venturi conduit could assist the return of venous blood and reduce the pressures of venae cavae about 0.5 mm Hg. And the pressure differences between venae cavae and pulmonary arteries were about –0.7 mm Hg, which suggested that the conduit could generate right ventricle-like effect.ConclusionThe venturi conduit can reduce the pressure of venae cavae, increase pulmonary circulation flow and improve Fontan hemodynamics.
ObjectiveTo review the advances in the computational fluid dynamics (CFD) in tissue engineering.MethodsThe latest research of CFD applied to tissue engineering were extensively retrieved and analyzed, the optimization of bioreactor design and the simulation of fluid dynamics and cell growth kinetics during tissue regeneration in vitro were mainly reviewed.ResultsThe simulation and predictive capabilities of CFD can provide important guidance for the optimization of bioreactor design, and the cultivation of engineering tissue. The accuracy of model prediction results can be further improved by combining with experimental research.ConclusionAs a new and effective research tool, CFD has its unique advantages in the application of tissue engineering. However, a more comprehensive and accurate simulation of the whole process of tissue regeneration still needs further studies.
ObjectiveTo investigate the application of computational fluid dynamics (CFD) in hemodynamic evaluation of aortic root reconstruction.MethodsThe clinical data of 1 patient with severe aortic valve stenosis was analyzed. Enhanced CT images were used as the original data, and professional software was used to reconstruct the three-dimensional (3D) model and fluid mechanics simulation of the aorta (including preoperative, postoperative and ideal conditions).ResultsThe 3D reconstruction model could directly present the distribution of valve calcification and the dilatation of the ascending aorta. The remodeled sinotubular junction and sinus structure were observed in the model under postoperative and ideal conditions. The improvement of ascending aorta dilatation was evaluated statistically by the diameter distribution before and after surgery. CFD simulation showed that the area of high flow velocity, pressure intensity and wall shear stress before surgery were consistent with the expansion area of the ascending aorta, and the restricted blood flow acceleration was observed at the angle between the arch and the descending aorta. In the ideal condition, the streamline of blood at the descending aorta was more stable and flat compared with preoperative or postoperative conditions, and there was no obvious abnormal high pressure and high wall shear stress area in the ascending aorta. The cardiopulmonary bypass time was 106 min, of which the aortic cross-clamp time was 60 min. The cardiac echocardiography indicated that the aortic valve worked well, and the peak systolic blood velocity was 1.7 m/s. The length of hospital stay after surgery was 12 d, including 2 d in ICU. The ventilator use time was 11.6 h. The patient did not have any remarkable discomfort during the 1-year follow-up.ConclusionCFD can be used to evaluate anatomic and hemodynamic abnormalities before aortic root reconstruction surgery. Postoperative reconstruction simulation can be performed again to evaluate the surgical effect, and meanwhile, virtual improvement can be tried for the unresolved problems to accumulate diagnosis and treatment experience, so as to provide patients with more accurate and personalized diagnosis and treatment procedure.