west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "material" 217 results
  • Platelet-Rich Plasma for the Treatment of Periodontal Intrabony Defects: A Meta-Analysis

    Objective To systematically evaluate the clinical effectiveness of platelet-rich plasma (PRP) combined with grafting material for the treatment of periodontal intrabony defects. Methods The following databases such as PubMed, The Cochrane Library, EMbase, CNKI, CBM and WanFang Data were searched on computer from inception to August, 2012 to collect the relevant randomized controlled trials (RCTs) on PRP combined with grafting material versus grafting material alone for periodontal intrabony defects. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted the data, and assessed the methodological quality of the included studies. RevMan 5.2 software was applied for meta-analysis. Results A total of 11 RCTs involving 342 patients were included. The pooled analysis on 7 RCTs showed that there was a significant difference in lower increase of clinical attachment loss (WMD=0.70, 95%CI 0.51 to 0.90, Plt;0.000 01) between the PRP combined with grafting material group and the grafting material alone group. But there was no significant difference in the gingival recession (WMD= −0.01, 95%CI −0.15 to 0.13, P=0.86). The pooled analysis on 9 RCTs showed that there was no significant difference in the reduction of plaque index (WMD= −0.04, 95%CI −0.09 to 0.02, P=0.20) between the two groups. Conclusion PRP combined with grafting material is superior to grafting material alone in the clinical attachment loss. But, there are no significant differences in gingival recession and plaque index. However, given the limited sample size and incomplete measure indexes of included studies, this conclusion still needs to be further proved by conducting more high-quality and large-scale RCTs.

    Release date: Export PDF Favorites Scan
  • Construction and Operation of a System for Secure and Precise Medical Material Distribution in Disaster Areas after Wenchuan Earthquake△

    After the Wenchuan Earthquake on May 12th, 2008, under the b leadership of the SichuanProvincial Party Committee, the People’s Government of Sichuan Province, and the Ministry of Health of the People’sRepublic of China, the Medical Security Team working at the Sichuan Provincial Headquarters for Wenchuan Earthquakeand Disaster Relief Work constructed a secure medical material distribution system through coordination and interactionamong and between regions, systems, and departments.

    Release date:2016-08-25 03:36 Export PDF Favorites Scan
  • Application and Research Progress of Extracellular Matrix in Long Segmental Tracheal Defect

    Patients with pathological tracheal loss more than a certain length may need tracheal transplantation.Traditional natural tissue and autologous tissue have failed to produce satisfactory clinical outcomes to replace the trachea because of local infection,tracheal stenosis,tracheomalacia,immune rejection et al. In recent years,the emergence oftissue engineering trachea provides a new idea for tracheal transplantation. But scientists have not yet reached a consensus about how to choose ideal extracellular matrix to construct tissue engineering trachea. At present research and applicationof tissue engineering trachea,extracellular matrices mainly include allogenic trachea,allogenic aorta and biologicalcomposite materials. Each allogenic matrix or biological composite material has its own advantages and disadvantages. Therefore,this article mainly summarizes recent application and research progress of extracellular matrix in long segmental tracheal defect and its future perspective.

    Release date:2016-08-30 05:46 Export PDF Favorites Scan
  • Research Progress of Myocardial Tissue Engineering Extracellular Matrix

    The establishing of myocardial tissue engineering techniques not only solve a series of issues that generate in cell and tissue transplantation after myocardial infarction, but also create a platform for selecting better materials and transplantation techniques. However, both experimental animal studies and recent clinical trials indicate that current transplantation techniques still have many defects, mainly including lack of suitable seed cells, low survival rate and low differentiation rate after transplantation. In this context, extracellular matrix (ECM), as myocardial tissue engineering scaffold materials, has gained increasing attention and become a frontier and focus of medical research in recent years. ECM is no longer merely regarded as a scaffold or a tissue, but plays an important role in providing essential signals to influence major intracellular pathways such as cell proliferation, differentiation and metabolism. The involved models of ECM can be classified into following types:natural biological scaffold materials, synthetic polymer scaffold materials and composite scaffold materials with more balanced physical and biological properties. This review mainly introduces research progress of ECM in myocardial tissue engineering and ECM materials.

    Release date:2016-08-30 05:50 Export PDF Favorites Scan
  • Study on Recovery of Bone Myocardial Infarction by Intravenously Delivering Mesenchymal Stem Cell Using Magnetic Targeting Material Fe3O4-UA-g-P(UA-co-AA)

    Objective To investigate the extent intravenously transplantation of mesenchymal stem cells (MSCs) mediated by magnetic targeting material arrive in the myocardial infarction region and its effects on the recovery of myocardial infarction. Methods Identify the phenotype of the fourth genet of ex vivo expanded MSCs, stain with DAPI after inducing with 10μmol/L 5-aza, then preserve the MSCs for transplantation. 28 SD rats were divided into three groups: group A (n=10), delivered MSCs combined with magnetic targeting material for 30 minutes to rats through tail vein,and kept on raising after placing magnets on the corresponding skin region to myocardial infarction area for 30min; group B (n=9), administration MSCs not conjuncted with magnetic targeting material through tail vein; group C (n=9), direct intramyocardial transplantation of MSCs. Two days after transplantation, evaluate the aggregation state of MSCs in the area of myocardial infarction; 30d later, estimate the functional and morphological changes in myocardial infarction region. Results We observed that each MSCs had 3-5 molecules of magnetic targeting material attached to its membrane under transmission electron microscope. The homing rates of MSCs respectively were group A 38%, group B 6%, group C 53%.The number of aggregating MSCs of group A and group C was apparently more than that of group B(Plt;0.01). After transplantation, the contraction indices of left ventricle in group A and group C had significant improvement as compared with that of pretransplantation (LVEF 46%±6% vs. 38%±8%, 51%±5% vs. 35%±4%; LVFS 28%±6% vs. 20%±7%, 32%±4% vs. 20%±5%, Plt;0.05) and administrated cells stained with DAPI could be detected in infarction region under optical microscope. After transplantation, the contraction indices of left ventricle in group B hadn’t conspicuous improvement, and the transplanted cells labeled with DAPI could not be identified in infarction region under optical microscope (homing rate of MSCs 38%). There was no statistically difference of results between group A and group C, but in experiment process, there was a high mortality in group C. Conclusion The method that intravenously delivery of MSCs mediated by magnetic targeting material could accumulate much more MSCs in infarction region, reduce infarction size, and effectively improve the cardiac function after infarction.

    Release date:2016-08-30 06:10 Export PDF Favorites Scan
  • Effect of Aureolysin on Staphylococcus Aureus Biofilm Formation of Dacron Biomaterial Surfaces

    Objective To investigate the effect of aureolysin (Aur) on staphylococcus aureus biofilm formation of dacron biomaterial surfaces under different Aur concentration. Methods Ninety dacron biomaterials were divided into 3 groups (group A, group IA, control group) with random number table (30 piece in each group). Dacron biomaterials were put into vials contained staphylococcus aureus (105 CFU/ml) respectively; then Aur was added to make the concentration at 400ng/ml in group A, and group B at 80ng/ml. The thickness and number of staphylococcus aureus biofilm on the surfaces of dacron biomaterials of each group were evaluated by confocal laser microscopy and scanning electron microscopy after incubating 6h, 16h, 24h, 30h, and 48h. Results The thickness and number of staphylococcus aureus biofilm on dacron biomaterials surfaces increased significantly with time dependence in control group. The thickness and number of staphylococcus aureus biofilm in group A were less than those in group B and control group at each time points (P〈0. 05). The thickness and number in group B were significantly decreased than those in control group (P 〈 0. 05). Conclusion The study shows that Aur can effectively inhibit the formation of staphylococcus aureus biofilm on dacron biomaterials surfaces with dose dependence.

    Release date:2016-08-30 06:18 Export PDF Favorites Scan
  • PREPARATION OF SILK FIBROIN-CHITOSAN SCAFFOLDS AND THEIR PROPERTIES

    Objective To prepare the silk fibroin (SF)-chitosan (CS) scaffolds by adjusting the mass ratio between CS and SF, and test and compare the properties of the scaffolds at different mass ratios. Methods According to the mass ratios of 6 ∶ 4 (group A), 6 ∶ 8 (group B), and 6 ∶ 16 (group C) between SF and CS, CS-SF scaffolds were prepared by freeze-drying method, respectively. The material properties, porosity, the dissolubility in hot water, the modulus elasticity, and the water absorption expansion rate were measured; the aperture size and shape of scaffolds were observed by scanning electron microscope (SEM). Density gradient centrifugation method was used to isolate the bone marrow mesenchymal stell cells (BMSCs) of 4-week-old male Sprague Dawley rats. The BMSCs at passage 3 were seeded onto 3 scaffolds respectively, and then the proliferation of cells on the scaffolds was detected by MTS method. Results The results of fourier transform infrared spectroscopy proved that with the increased content of CS, the absorption peak of random coil/α helix structure (1 654 cm-1 and 1 540 cm-1) constantly decreased, but the absorption peak of corresponding to β-fold structure (1 628 cm-1 and 1 516 cm- 1) increased. The porosity was 87.36% ± 2.15% in group A, 77.82% ± 1.37% in group B, and 72.22% ± 1.37% in group C; the porosity of group A was significantly higher than that of groups B and C (P lt; 0.05), and the porosity of group B was significantly higher than that of group C (P lt; 0.05). The dissolubility in hot water was 0 in groups A and B, and was 3.12% ± 1.26% in group C. The scaffolds had good viscoelasticity in 3 groups; the modulus elasticity of 3 groups were consistent with the range of normal articular cartilage (4-15 kPa); no significant difference was found among 3 groups (F=5.523, P=0.054). The water absorption expansion rate was 1 528.52% ± 194.63% in group A, 1 078.22% ± 100.52% in group B, and 1 320.05% ± 179.97% in group C; the rate of group A was significantly higher than that of group B (P=0.05), but there was no significant difference between groups A and C and between groups B and C (P gt; 0.05). SEM results showed the aperture size of group A was between 50-250 μm, with good connectivity of pores; however, groups B and C had structure disturbance, with non-uniform aperture size and poor connectivity of pores. The growth curve results showed the number of living cells of group A was significantly higher than that of groups B and C at 1, 3, 5, and 7 days (P lt; 0.05); and there were significant differences between groups B and C at 3, 5, and 7 days (P lt; 0.05). Conclusion The CS-SF scaffold at a mass ratio of 6 ∶ 4 is applicable for cartilage tissue engineering.

    Release date:2016-08-31 10:53 Export PDF Favorites Scan
  • IN VITRO STUDY ON INJECTABLE ALGINATE-STRONTIUM HYDROGEL FOR BONE TISSUE ENGINEERING

    Objective To investigate the application potential of alginate-strontium (Sr) hydrogel as an injectable scaffold material in bone tissue engineering. Methods The alginate-Sr/-calcium (Ca) hydrogel beads were fabricated by adding 2.0wt% alginate sodium to 0.2 mol/L SrCl2/CaCl2 solution dropwise. Microstructure, modulus of compression, swelling rate, and degradability of alginate-Sr/-Ca hydrogels were tested. Bone marrow mesenchymal stem cells (BMSCs) were isolated from femoral bones of rabbits by flushing of marrow cavity. BMSCs at passage 5 were seeded onto the alginate-Sr hydrogel (experimental group) and alginate-Ca hydrogel (control group), and the viability and proliferation of BMSCs in 2 alginate hydrogels were assessed. The osteogenic differentiation of cells embeded in 2 alginate hydrogels was evaluated by alkaline phosphate (ALP) activity, osteoblast specific gene [Osterix (OSX), collagen type I, and Runx2] expression level and calcium deposition by fluorescent quantitative RT-PCR and alizarin red staining, Von Kossa staining. The BMSCs which were embeded in alginate-Ca hydrogel and cultured with common growth medium were harvested as blank control group. Results The micromorphology of alginate-Sr hydrogel was similar to that of the alginate-Ca hydrogel, with homogeneous pore structure; the modulus of compression of alginate-Sr hydrogel and alginate-Ca hydrogel was (186.53 ± 8.37) and (152.14 ± 7.45) kPa respectively, showing significant difference (t=6.853, P=0.002); there was no significant difference (t=0.737, P=0.502) in swelling rate between alginate-Sr hydrogel (14.32% ± 1.53%) and alginate-Ca hydrogel (15.25% ± 1.64%). The degradabilities of 2 alginate hydrogels were good; the degradation rate of alginate-Sr hydrogel was significantly lower than that of alginate-Ca hydrogel on the 20th, 25th, and 30th days (P lt; 0.05). At 1-4 days, the morphology of cells on 2 alginate hydrogels was spherical and then the shape was spindle or stellate. When three-dimensional cultured for 21 days, the DNA content of BMSCs in experimental group [(4.38 ± 0.24) g] was significantly higher than that in control group [(3.25 ± 0.21) g ] (t=8.108, P=0.001). On the 12th day after osteogenic differentiation, the ALP activity in experimental group was (15.28 ± 1.26) U/L, which was significantly higher than that in control group [(12.07 ± 1.12) U/L] (P lt; 0.05). Likewise, the mRNA expressions of OSX, collagen type I, and Runx2 in experimental group were significantly higher than those in control group (P lt; 0.05). On the 21th day after osteogenic differentiation, alizarin red staining and Von Kossa staining showed calcium deposition in 2 groups; the calcium nodules and phosphate deposition in experimental group were significantly higher than those in control group (P lt; 0.05). Conclusion Alginate-Sr hydrogel has good physicochemical properties and can promote the proliferation and osteogenic differentiation of BMSCs, so it is an excellent injectable scaffold material for bone tissue engineering.

    Release date:2016-08-31 10:53 Export PDF Favorites Scan
  • CURRENT SITUATION AND PROSPECT OF Tenomodulin IN TENDON TISSUE ENGINEERING

    Objective To review the latest researches of Tenomodulin in tendon tissue engineering, to predict the progress of research and application of Tenomodulin. Methods The literature concerning Tenomodulin in tendon tissue engineering was collected and analyzed. Results Tenomodulin is a type II transmembrane glycoprotein that can regulate growth of tendon and contains a C-terminal anti-angiogenic domain. The human Tenomodulin gene spans approximately 1 360 bp and is mapped to Xq22.1. The expression of Tenomodulin is regulated by various biological factors, especially Scleraxis; and the nature and structure of scaffold material as well as the stain loading and cell passage, can modulate the expression of Tenomodulin. Conclusion Tenomodulin, as relatively specific molecule makers for tendon and containing a C-terminal anti-angiogenic domain, is expected to play a significant role in tendon tissue engineering.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF CELL-SCAFFOLD COMPLEX IN TENDON TISSUE ENGINEERING

    Objective To review the research progress of cell-scaffold complex in the tendon tissue engineering. Methods Recent literature concerning cell-scaffold complex in the tendon tissue engineering was reviewed, the research situation of the cell-scaffold complex was elaborated in the aspects of seed cells, scaffolds, cell culture, and application. Results In tendon tissue engineering, a cell-scaffold complex is built by appropriate seed cells and engineered scaffolds. Experiments showed that modified seed cells had better therapeutic effects. Further, scaffold functionality could be improved through surface modification, growth factor cure, mechanical stimulation, and contact guidance. Among these methods, mechanical stimulation revealed the most significant results in promoting cell proliferation and function. Through a variety of defect models, it is demonstrated that the use of cell-scaffold complex could achieve satisfactory results for tendon regeneration. Conclusion The cell-scaffold complex for tendon tissue engineering is a popular research topic. Although it has not yet met the requirement of clinical use, it has broad application prospects.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
22 pages Previous 1 2 3 ... 22 Next

Format

Content